-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 59700a1
Showing
15 changed files
with
1,939 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
name: Build | ||
permissions: | ||
contents: write | ||
on: | ||
push: | ||
branches: | ||
- "*" | ||
pull_request: | ||
branches: | ||
- "*" | ||
jobs: | ||
build: | ||
runs-on: ubuntu-latest | ||
steps: | ||
- name: Checkout Project | ||
uses: actions/checkout@v4 | ||
with: | ||
fetch-depth: 2 | ||
- name: Install Lean | ||
run: | | ||
curl https://raw.githubusercontent.com/leanprover/elan/master/elan-init.sh -sSf | sh -s - -y --default-toolchain `cat ./lean-toolchain` | ||
echo "$HOME/.elan/bin" >> $GITHUB_PATH | ||
- run: lake exe cache get && lake build |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
/.lake |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
import GaloisRamification.GaloisRamification | ||
import GaloisRamification.Hilbert's_Ramification_Theory | ||
import GaloisRamification.ToMathlib | ||
import GaloisRamification.ToMathlib.Finite | ||
import GaloisRamification.ToMathlib.FractionRing | ||
import GaloisRamification.ToMathlib.Normal | ||
import GaloisRamification.ToMathlib.restrictScalarsHom | ||
import GaloisRamification.ToMathlib.separableClosure |
Large diffs are not rendered by default.
Oops, something went wrong.
1,008 changes: 1,008 additions & 0 deletions
1,008
GaloisRamification/Hilbert's_Ramification_Theory.lean
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.FieldTheory.PurelyInseparable | ||
import Mathlib.NumberTheory.NumberField.Basic | ||
import Mathlib.RingTheory.Valuation.ValuationRing | ||
|
||
import GaloisRamification.ToMathlib.Finite | ||
import GaloisRamification.ToMathlib.FractionRing | ||
import GaloisRamification.ToMathlib.Normal | ||
import GaloisRamification.ToMathlib.restrictScalarsHom | ||
import GaloisRamification.ToMathlib.separableClosure | ||
|
||
set_option autoImplicit false | ||
|
||
open Algebra | ||
|
||
open scoped BigOperators | ||
|
||
/-! ### Preliminary -/ | ||
|
||
section Galois | ||
|
||
open IntermediateField AlgEquiv QuotientGroup | ||
|
||
variable {K E L : Type*} [Field K] [Field E] [Field L] [Algebra K E] [Algebra K L] [Algebra E L] | ||
[IsScalarTower K E L] | ||
|
||
/-- The `AlgEquiv` induced by an `AlgHom` from the domain of definition to the `fieldRange`. -/ | ||
noncomputable def AlgHom.fieldRangeAlgEquiv (σ : E →ₐ[K] L) : | ||
E ≃ₐ[K] σ.fieldRange where | ||
toFun x := ⟨σ x, by simp only [AlgHom.mem_fieldRange, exists_apply_eq_apply]⟩ | ||
invFun y := Classical.choose (AlgHom.mem_fieldRange.mp y.2) | ||
left_inv x := σ.toRingHom.injective (Classical.choose_spec (AlgHom.mem_fieldRange.mp ⟨x, rfl⟩)) | ||
right_inv y := Subtype.val_inj.mp (Classical.choose_spec (mem_fieldRange.mp y.2)) | ||
map_mul' x y := Subtype.val_inj.mp (σ.toRingHom.map_mul x y) | ||
map_add' x y := Subtype.val_inj.mp (σ.toRingHom.map_add x y) | ||
commutes' x := Subtype.val_inj.mp (commutes σ x) | ||
|
||
variable [FiniteDimensional K L] | ||
|
||
/-- If `H` is a subgroup of `Gal(L/K)`, then `Gal(L / fixedField H)` is isomorphic to `H`. -/ | ||
def IntermediateField.subgroup_equiv_aut (H : Subgroup (L ≃ₐ[K] L)) : | ||
(L ≃ₐ[fixedField H] L) ≃* H where | ||
toFun ϕ := ⟨ϕ.restrictScalars _, le_of_eq (fixingSubgroup_fixedField H) ϕ.commutes⟩ | ||
invFun ϕ := { toRingEquiv (ϕ : L ≃ₐ[K] L) with | ||
commutes' := (ge_of_eq (fixingSubgroup_fixedField H)) ϕ.mem } | ||
left_inv _ := by ext; rfl | ||
right_inv _ := by ext; rfl | ||
map_mul' _ _ := by ext; rfl | ||
|
||
variable {K L : Type*} [Field K] [Field L] [Algebra K L] {E : IntermediateField K L} | ||
|
||
/-- If `H` is a normal Subgroup of `Gal(L / K)`, then `fixedField H` is Galois over `K`. -/ | ||
instance of_fixedField_normal_subgroup [IsGalois K L] | ||
(H : Subgroup (L ≃ₐ[K] L)) [hn : Subgroup.Normal H] : IsGalois K (fixedField H) where | ||
to_isSeparable := Algebra.isSeparable_tower_bot_of_isSeparable K (fixedField H) L | ||
to_normal := by | ||
apply normal_iff_forall_map_le'.mpr | ||
intro σ x ⟨a, ha, hax⟩ τ | ||
rw [← hax] | ||
calc _ = (σ * σ⁻¹ * τ.1 * σ) a := by rw [mul_inv_cancel]; rfl | ||
_ = _ := by nth_rw 2 [← ha ⟨_ , (Subgroup.Normal.conj_mem hn τ.1 τ.2 σ⁻¹)⟩]; rfl | ||
|
||
/-- If `H` is a normal Subgroup of `Gal(L/K)`, then `Gal(fixedField H/K)` is isomorphic to | ||
`Gal(L/K)⧸H`. -/ | ||
noncomputable def IsGalois.normal_aut_equiv_quotient [FiniteDimensional K L] [IsGalois K L] | ||
(H : Subgroup (L ≃ₐ[K] L)) [Subgroup.Normal H] : | ||
((fixedField H) ≃ₐ[K] (fixedField H)) ≃* (L ≃ₐ[K] L) ⧸ H := sorry/- by | ||
apply MulEquiv.symm <| (quotientMulEquivOfEq ((fixingSubgroup_fixedField H).symm.trans _)).trans | ||
<| quotientKerEquivOfSurjective (restrictNormalHom (fixedField H)) <| | ||
restrictNormalHom_surjective L | ||
ext σ | ||
apply (((mem_fixingSubgroup_iff (L ≃ₐ[K] L)).trans ⟨fun h ⟨x, hx⟩ ↦ Subtype.val_inj.mp <| | ||
(restrictNormal_commutes σ (fixedField H) ⟨x, hx⟩).trans (h x hx) , _⟩).trans | ||
AlgEquiv.ext_iff.symm).trans (MonoidHom.mem_ker (restrictNormalHom (fixedField H))).symm | ||
intro h x hx | ||
dsimp | ||
have hs : ((restrictNormalHom (fixedField H)) σ) ⟨x, hx⟩ = σ x := | ||
restrictNormal_commutes σ (fixedField H) ⟨x, hx⟩ | ||
rw [← hs] | ||
exact Subtype.val_inj.mpr (h ⟨x, hx⟩) -/ | ||
|
||
end Galois | ||
|
||
|
||
|
||
namespace Polynomial | ||
|
||
variable {R : Type*} (S L : Type*) [CommRing R] [CommRing S] [IsDomain S] [CommRing L] [IsDomain L] | ||
[Algebra R L] [Algebra S L] [Algebra R S] [IsScalarTower R S L] [IsIntegralClosure S R L] | ||
|
||
|
||
open Multiset | ||
|
||
/-- If `L` be an extension of `R`, then for a monic polynomial `p : R[X]`, the roots of `p`in `L` | ||
are equal to the roots of `p` in the integral closure of `R` in `L`. -/ | ||
theorem isIntegralClosure_root_eq_ofMonic {p : R[X]} (hp : p.Monic): | ||
(map (algebraMap R S) p).roots.map (algebraMap S L) = (map (algebraMap R L) p).roots := by | ||
classical | ||
ext x | ||
by_cases hx : ∃ y : S, algebraMap S L y = x | ||
· rcases hx with ⟨y, h⟩ | ||
have hi : Function.Injective (algebraMap S L) := IsIntegralClosure.algebraMap_injective S R L | ||
rw [← h, count_map_eq_count' _ _ hi _, count_roots, count_roots, | ||
IsScalarTower.algebraMap_eq R S L, ← map_map, ← eq_rootMultiplicity_map hi] | ||
· have h : count x ((p.map (algebraMap R S)).roots.map (algebraMap S L)) = 0 := by | ||
simp only [mem_map, mem_roots', ne_eq, IsRoot.def, Subtype.exists, not_exists, | ||
not_and, and_imp, count_eq_zero] | ||
intro y _ _ h | ||
exact hx ⟨y, h⟩ | ||
rw [h] | ||
exact Decidable.byContradiction fun h ↦ hx <| IsIntegralClosure.isIntegral_iff.mp | ||
⟨p, hp, (eval₂_eq_eval_map (algebraMap R L)).trans <| | ||
(mem_roots (hp.map (algebraMap R L)).ne_zero).1 (count_ne_zero.mp (Ne.symm h))⟩ | ||
|
||
/-- If `L` be an extension of `R`, then for a monic polynomial `p : R[X]`, the number of roots | ||
of `p` in `L` is equal to the number of roots of `p` in the integral closure of `R` in `L`. -/ | ||
theorem isIntegralClosure_root_card_eq_ofMonic {p : R[X]} (hp : p.Monic) : | ||
card (map (algebraMap R S) p).roots = card (map (algebraMap R L) p).roots := by | ||
rw [← isIntegralClosure_root_eq_ofMonic S L hp, card_map] | ||
|
||
/-- A variant of the theorem `Polynomial.roots_map_of_injective_of_card_eq_natDegree` that | ||
replaces the injectivity condition with the condition `Polynomial.map f p ≠ 0`. -/ | ||
theorem roots_map_of_card_eq_natDegree {A B : Type*} [CommRing A] [CommRing B] | ||
[IsDomain A] [IsDomain B] {p : A[X]} {f : A →+* B} (h : p.map f ≠ 0) | ||
(hroots : card p.roots = p.natDegree) : p.roots.map f = (map f p).roots := by | ||
apply eq_of_le_of_card_le (map_roots_le h) | ||
simpa only [card_map, hroots] using (card_roots' (map f p)).trans (natDegree_map_le f p) | ||
|
||
end Polynomial |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,60 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.NumberTheory.NumberField.Basic | ||
|
||
section | ||
|
||
open Ideal | ||
|
||
attribute [local instance] Ideal.Quotient.field in | ||
/-- If `p` is a non-zero ideal of the `ℤ`, then `ℤ ⧸ p` is finite. -/ | ||
theorem Int.Quotient.finite_of_ne_bot {I : Ideal ℤ} (h : I ≠ ⊥) : Finite (ℤ ⧸ I) := by | ||
have equiv := Int.quotientSpanEquivZMod (Submodule.IsPrincipal.generator I) | ||
rw [span_singleton_generator I] at equiv | ||
haveI : NeZero (Submodule.IsPrincipal.generator I).natAbs := ⟨fun eq ↦ | ||
h ((Submodule.IsPrincipal.eq_bot_iff_generator_eq_zero I).mpr (Int.natAbs_eq_zero.mp eq))⟩ | ||
exact Finite.of_equiv (ZMod (Submodule.IsPrincipal.generator I).natAbs) equiv.symm | ||
|
||
/-- In particular, if `p` is a maximal ideal of the `ℤ`, then `ℤ ⧸ p` is a finite field. -/ | ||
instance Int.Quotient.finite_of_is_maxiaml (p : Ideal ℤ) [hpm : p.IsMaximal] : | ||
Finite (ℤ ⧸ p) := | ||
finite_of_ne_bot (Ring.ne_bot_of_isMaximal_of_not_isField hpm Int.not_isField) | ||
|
||
/- #check Module.finite_of_finite | ||
#check FiniteDimensional.fintypeOfFintype | ||
def Module.Finite.finiteOfFinite {R M : Type*} [CommRing R] [Finite R] [AddCommMonoid M] [Module R M] | ||
[Module.Finite R M] : Finite M := by | ||
have := exists_fin' R M --exact .of_surjective f hf | ||
sorry -/ | ||
|
||
variable {R : Type*} [CommRing R] [h : Module.Finite ℤ R] | ||
|
||
theorem Ideal.Quotient.finite_of_module_finite_int {I : Ideal R} (hp : I ≠ ⊥) : Finite (R ⧸ I) := sorry | ||
|
||
-- `NoZeroSMulDivisors` can be removed | ||
instance Ideal.Quotient.finite_of_module_finite_int_of_isMaxiaml [NoZeroSMulDivisors ℤ R] [IsDomain R] | ||
(p : Ideal R) [hpm : p.IsMaximal] : Finite (R ⧸ p) := | ||
Ideal.Quotient.finite_of_module_finite_int <| Ring.ne_bot_of_isMaximal_of_not_isField hpm <| | ||
fun hf => Int.not_isField <| | ||
(Algebra.IsIntegral.isField_iff_isField (NoZeroSMulDivisors.algebraMap_injective ℤ R)).mpr hf | ||
|
||
end | ||
|
||
namespace NumberField | ||
|
||
variable {K : Type*} [Field K] [NumberField K] | ||
|
||
/-- For any nonzero ideal `I` of `𝓞 K`, `(𝓞 K) ⧸ I` has only finite elements. | ||
Note that if `I` is maximal, then `Finite ((𝓞 K) ⧸ I)` can be obtained by `inferInstance`. -/ | ||
theorem quotientFiniteOfNeBot {I : Ideal (𝓞 K)} (h : I ≠ ⊥) : Finite ((𝓞 K) ⧸ I) := | ||
Ideal.Quotient.finite_of_module_finite_int h | ||
|
||
example (p : Ideal (𝓞 K)) [p.IsMaximal] : Finite ((𝓞 K) ⧸ p) := inferInstance | ||
|
||
/- instance quotientFiniteOfIsMaxiaml (p : Ideal (𝓞 K)) [hpm : p.IsMaximal] : Finite ((𝓞 K) ⧸ p) := | ||
quotientFiniteOfNeBot (Ring.ne_bot_of_isMaximal_of_not_isField hpm (RingOfIntegers.not_isField K)) -/ | ||
|
||
end NumberField |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.LinearAlgebra.FiniteDimensional.Defs | ||
import Mathlib.RingTheory.Localization.FractionRing | ||
|
||
attribute [local instance] FractionRing.liftAlgebra | ||
|
||
instance {A B : Type*} [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] | ||
[Module.Finite A B] [NoZeroSMulDivisors A B] : | ||
FiniteDimensional (FractionRing A) (FractionRing B) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.FieldTheory.PurelyInseparable | ||
import Mathlib.NumberTheory.NumberField.Basic | ||
import Mathlib.RingTheory.Valuation.ValuationRing | ||
|
||
attribute [local instance] Ideal.Quotient.field | ||
|
||
variable {A B : Type*} [CommRing A] [IsDomain A] [CommRing B] [IsDomain B] [Algebra A B] | ||
(p : Ideal A) (P : Ideal B) [p.IsMaximal] [P.IsMaximal] [P.LiesOver p] | ||
(K L : Type*) [Field K] [Field L] [Algebra A K] [IsFractionRing A K] [Algebra B L] [Algebra K L] | ||
[Algebra A L] [IsScalarTower A B L] [IsScalarTower A K L] [Normal K L] | ||
|
||
example : Normal (A ⧸ p) (B ⧸ P) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.Algebra.Algebra.Subalgebra.Tower | ||
import Mathlib.LinearAlgebra.Dimension.Finrank | ||
|
||
variable (R S A : Type*) [CommSemiring R] [CommSemiring S] [Semiring A] [Algebra R S] [Algebra S A] | ||
[Algebra R A] [IsScalarTower R S A] | ||
|
||
def AlgEquiv.restrictScalarsHom : (A ≃ₐ[S] A) →* (A ≃ₐ[R] A) where | ||
toFun f := AlgEquiv.restrictScalars R f | ||
map_one' := rfl | ||
map_mul' _ _ := rfl | ||
|
||
theorem AlgEquiv.restrictScalarsHom_injective : Function.Injective (AlgEquiv.restrictScalarsHom R S A) := | ||
AlgEquiv.restrictScalars_injective R | ||
|
||
theorem AlgEquiv.restrictScalarsHom_bot_surjective : | ||
Function.Surjective (AlgEquiv.restrictScalarsHom R (⊥ : Subalgebra R S) S) := sorry | ||
|
||
noncomputable def subalgebra_bot_aut_equiv : (S ≃ₐ[(⊥ : Subalgebra R S)] S) ≃* (S ≃ₐ[R] S) := | ||
MulEquiv.ofBijective _ | ||
⟨AlgEquiv.restrictScalarsHom_injective R _ S, AlgEquiv.restrictScalarsHom_bot_surjective R S⟩ | ||
|
||
noncomputable def aut_equiv_of_finrank_eq_one {R S : Type*} (A : Type*) [CommSemiring R] [CommRing S] | ||
[Semiring A] [Algebra R S] [Algebra S A] [Algebra R A] [IsScalarTower R S A] | ||
(h : Module.finrank R S = 1) : (A ≃ₐ[S] A) ≃* (A ≃ₐ[R] A) := sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,33 @@ | ||
/- | ||
Copyright (c) 2024 Yongle Hu. All rights reserved. | ||
Released under Apache 2.0 license as described in the file LICENSE. | ||
Authors: Yongle Hu | ||
-/ | ||
import Mathlib.FieldTheory.PurelyInseparable | ||
|
||
namespace separableClosure | ||
|
||
variable (K L : Type*) [Field K] [Field L] [Algebra K L] [Normal K L] | ||
|
||
#check IsPurelyInseparable.injective_comp_algebraMap | ||
|
||
#check instUniqueAlgHomOfIsPurelyInseparable | ||
|
||
#check separableClosure.isPurelyInseparable | ||
|
||
theorem restrictNormalHom_injective : Function.Injective | ||
(AlgEquiv.restrictNormalHom (F := K) (K₁ := L) (separableClosure K L)) := by | ||
sorry | ||
|
||
noncomputable def restrictNormalEquiv : (L ≃ₐ[K] L) ≃* | ||
(separableClosure K L) ≃ₐ[K] (separableClosure K L) := | ||
MulEquiv.ofBijective _ | ||
⟨restrictNormalHom_injective K L, AlgEquiv.restrictNormalHom_surjective L⟩ | ||
|
||
example (e : PowerBasis K (separableClosure K L)) (σ τ : L ≃ₐ[K] L) (h : σ e.gen = τ e.gen) : σ = τ := by | ||
sorry | ||
|
||
example [FiniteDimensional K L] : ∃ x : L, ∀ σ τ : L ≃ₐ[K] L, σ x = τ x → σ = τ := by | ||
sorry | ||
|
||
end separableClosure |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
# GaloisRamification |
Oops, something went wrong.