Skip to content

Commit

Permalink
Added Python script for creating reports as PDF from CVS files provid…
Browse files Browse the repository at this point in the history
…ed by Datacake (#104)
  • Loading branch information
matthias-bs authored Sep 4, 2024
1 parent 59d37e1 commit e6fe10f
Show file tree
Hide file tree
Showing 2 changed files with 360 additions and 0 deletions.
360 changes: 360 additions & 0 deletions extras/reports/datacake_report.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
###################################################################################################
# datacake_report-2.py
#
# This script generates a PDF report from CSV files containing sensor data
# which are provided by Datacake.
#
# created: 08/2024
#
#
# MIT License
#
# Copyright (c) 2024 Matthias Prinke
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
#
#
# History:
#
# 20240901 Created
#
# ToDo:
# -
###################################################################################################

import os
import pandas as pd
#import numpy as np
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.backends.backend_pdf import PdfPages

LOCATION = '<Location>'

# Set the desired language
LANG = 'en'

# Directory containing the CSV files
src_dir = "datacake_csv"

# Output PDF file
pdf_file = "weather_report.pdf"

# Define the last column in the CSV files
last_column = 11

COLUMNS = {
'ws_temp_c': 0,
'ws_humidity': 6,
'rain_mm': 8,
'wind_avg': 5,
'wind_gust': 9,
'wind_direction': 10,
'battery_voltage': 11,
}

COLORS = {
'ws_temp_c': 'r',
'ws_humidity': 'skyblue',
'rain_mm': 'b',
'wind_avg': 'g',
'wind_gust': 'lime',
'wind_direction': 'gray',
'battery_voltage': 'orange',
}


# Define translations
translations = {
'en': {
'Weather Report': 'Weather Report',
'Annual Overview': 'Annual Overview',
'Air Temperature and Humidity': 'Air Temperature and Humidity',
'Temperature [°C]': 'Temperature [°C]',
'Relative Humidity [%]': 'Relative Humidity [%]',
'Daily Avg.': 'Daily Avg.',
'Rain': 'Rain',
'Rain [mm]': 'Rain [mm]',
'Rain [mm] (Rain Gauge)': 'Rain [mm] (Rain Gauge)',
'Wind': 'Wind',
'Average [m/s]': 'Average [m/s]',
'Gusts [m/s]': 'Gusts [m/s]',
'Direction [°]': 'Direction [°]',
'Battery Voltage': 'Battery Voltage',
'Voltage [mV]': 'Voltage [mV]',
'Monthly Reports': 'Monthly Reports'
},
'de': {
'Weather Report': 'Wetterbericht',
'Annual Overview': 'Jahresübersicht',
'Air Temperature and Humidity': 'Luftemperatur und -feuchte',
'Temperature [°C]': 'Temperatur [°C]',
'Relative Humidity [%]': 'rel. Feuchte [%]',
'Daily Avg.': 'tägl. Durchschnitt',
'Rain': 'Regen',
'Rain [mm]': 'Regen [mm]',
'Rain [mm] (Rain Gauge)': 'Regen [mm] (Regenmesser)',
'Wind': 'Wind',
'Average [m/s]': 'Durchschnitt [m/s]',
'Gusts [m/s]': 'Böen [m/s]',
'Direction [°]': 'Richtung [°]',
'Battery Voltage': 'Batteriespannung',
'Voltage [mV]': 'Spannung [mV]',
'Monthly Reports': 'Monatsberichte'
}
}

def tr(text):
return translations.get(LANG, {}).get(text, text)


# List all CSV files in the directory
csv_files = [f for f in os.listdir(src_dir) if f.endswith('.csv')]

# Initialize an empty list to store DataFrames
dataframes = []

# Read each CSV file
for file in csv_files:
file_path = os.path.join(src_dir, file)
df = pd.read_csv(file_path, skiprows=0, parse_dates=[0], date_parser=lambda x: pd.to_datetime(x, format='%a, %d %b %Y %H:%M:%S'))

for col in range(1, last_column):
# Replace comma with dot and convert to float
df.iloc[:, col] = df.iloc[:, col].astype(float)

dataframes.append(df)

# Combine all DataFrames into a single DataFrame
combined_df = pd.concat(dataframes, ignore_index=True)

# Set the first column as the index (time)
combined_df.set_index(combined_df.columns[0], inplace=True)

# Sort the DataFrame by the index (time)
combined_df.sort_index(inplace=True)

# Print the combined DataFrame
print(combined_df)

# Remove invalid rows from the combined DataFrame
combined_df.dropna(inplace=True)

# Drop rows where column 3 (Humidity) is zero
combined_df = combined_df[combined_df.iloc[:, COLUMNS['ws_humidity']] != 0]


def title_page(plt, pdf, title, font_size=24):
fig, ax = plt.subplots(figsize=(12, 6))
ax.text(0.5, 0.5, title, transform=ax.transAxes, fontsize=font_size, ha='center', va='center')
ax.axis('off')
pdf.savefig(fig)
plt.close(fig)

def plot_data(plt, pdf, df, columns, title, xlabel, ylabels, colors, avg_label, avg_colors):
fig, axes = plt.subplots(len(columns), 1, figsize=(12, 6), layout="tight")
for i in range(len(columns)):
if len(columns) == 1:
ax = axes
else:
ax = axes[i]
ax.plot(df.index, df.iloc[:, columns[i]], label=ylabels[i], color=colors[i])
if xlabel:
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabels[i])
#ax.tick_params(axis='y', labelcolor=colors[i])
ax.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M'))
ax.xaxis.set_major_locator(mdates.AutoDateLocator())
if i < len(columns) - 1:
# Remove x-axis labels for all but the last subplot
ax.set_xticklabels([])
if avg_colors[i]:
daily_avg = df.iloc[:, columns[i]].resample('D').mean()
ax.plot(daily_avg.index, daily_avg, label=f'{avg_label} {ylabels[i]}', color=avg_colors[i], linestyle='--', linewidth=2)

ax.legend()
ax.grid(True)

# Rotate x-axis labels for better readability
plt.setp(ax.xaxis.get_majorticklabels(), rotation=45)

fig.suptitle(title, fontsize=16)

pdf.savefig(fig)
plt.close(fig)

# Create a new figure for Rain Gauge
def plot_rain(plt, pdf, df_diff, df, column, title, xlabel, ylabel, color):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6), layout="tight")

# Plot the Rain Gauge differences as a bar graph
ax1.bar(df_diff.index, df_diff, label=ylabel[0], color=color)
if xlabel:
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel[0])
#ax.tick_params(axis='y', labelcolor='b')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M'))
ax1.xaxis.set_major_locator(mdates.AutoDateLocator())
#ax1.set_xticklabels([])

ax1.legend()
ax1.grid(True)

# Plot raw rain gauge value on the second subplot
ax2.plot(df.index, df.iloc[:, column], label=ylabel[1], color=color)
if xlabel:
ax2.set_xlabel(xlabel)
ax2.set_ylabel(ylabel[1])
ax2.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M'))
ax2.xaxis.set_major_locator(mdates.AutoDateLocator())

ax2.legend()
ax2.grid(True)

# Rotate x-axis labels for better readability
plt.setp(ax1.xaxis.get_majorticklabels(), rotation=45)
plt.setp(ax2.xaxis.get_majorticklabels(), rotation=45)

# Set the title of the figure
fig.suptitle(title, fontsize=16)

# Save the current figure to the PDF
pdf.savefig(fig)

# Close the figure to free up memory
plt.close(fig)

# Create a new figure for Wind
def plot_wind(plt, pdf, df, columns, title, xlabel, ylabel, colors):
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 6), layout="tight")

# Plot average and gust wind speed on the first subplot
ax1.plot(df.index, df.iloc[:, columns[1]], label=ylabel[1], color=colors[1], linewidth=2)
ax1.plot(df.index, df.iloc[:, columns[0]], label=ylabel[0], color=colors[0], linewidth=2)
if xlabel:
ax1.set_xlabel(xlabel)
ax1.set_ylabel(ylabel[0])
#ax.tick_params(axis='y', labelcolor='b')
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M'))
ax1.xaxis.set_major_locator(mdates.AutoDateLocator())
ax1.set_xticklabels([])
#ax1.set_xticklabels([])
ax1.legend()
ax1.grid(True)

# Plot column 1 on the second subplot
# Create a quiver plot
#u = columns[0] * np.cos(df.iloc[:, columns[2]]/180*np.pi)
#v = columns[0] * np.sin(df.iloc[:, columns[2]]/180*np.pi)
#ax2.quiver(df.index, [0] * len(df.index), u, v, color=colors[2])
hourly_avg = df.iloc[:, columns[2]].resample('H').mean()
ax2.plot(hourly_avg.index, hourly_avg, label=ylabel[2], color=colors[2])
if xlabel:
ax2.set_xlabel(xlabel)
ax2.set_ylabel(ylabel[2])
ax2.xaxis.set_major_formatter(mdates.DateFormatter('%d-%m-%y %H:%M'))
ax2.xaxis.set_major_locator(mdates.AutoDateLocator())


ax2.legend()
ax2.grid(True)

# Rotate x-axis labels for better readability
plt.setp(ax1.xaxis.get_majorticklabels(), rotation=45)
plt.setp(ax2.xaxis.get_majorticklabels(), rotation=45)

# Set the title of the figure
fig.suptitle(title, fontsize=16)

# Save the current figure to the PDF
pdf.savefig(fig)

# Close the figure to free up memory
plt.close(fig)

# Create a PdfPages object to save the figures
with PdfPages(pdf_file) as pdf:
title_page(plt, pdf, tr('Weather Report') + f' {LOCATION}')

title_page(plt, pdf, tr('Annual Overview'), 18)

plot_data(plt, pdf, combined_df,
[COLUMNS['ws_temp_c'], COLUMNS['ws_humidity']],
tr('Air Temperature and Humidity'), None,
[tr('Temperature [°C]'), tr('Relative Humidity [%]')],
[COLORS['ws_temp_c'], COLORS['ws_humidity']],
tr('Daily Avg.'), ['k', 'k'])

# Calculate the difference between consecutive values in column "Rain Gauge"
rain_df = combined_df[combined_df.iloc[:, COLUMNS['rain_mm']] != 0]
rain_diff_df = rain_df.iloc[:, COLUMNS['rain_mm']].diff().fillna(0)
#rain_diff_df = rain_df[rain_df >= 0]
plot_rain(plt, pdf, rain_diff_df, rain_df, COLUMNS['rain_mm'],
tr('Rain'), None,
[tr('Rain [mm]'), tr('Rain [mm] (Rain Gauge)')],
COLORS['rain_mm'])

plot_wind(plt, pdf, combined_df,
[COLUMNS['wind_avg'], COLUMNS['wind_gust'], COLUMNS['wind_direction']],
tr('Wind'), None,
[tr('Average [m/s]'), tr('Gusts [m/s]'), tr('Direction [°]')],
[COLORS['wind_avg'], COLORS['wind_gust'], COLORS['wind_direction']])

plot_data(plt, pdf, combined_df,
[COLUMNS['battery_voltage']],
tr('Battery Voltage'), None, [tr('Voltage [mV]')],
[COLORS['battery_voltage']], tr('Daily Avg.'), [None])

title_page(plt, pdf, tr('Monthly Reports'), 18)

# Group the data by month
combined_df['Month'] = combined_df.index.to_period('M')

# Create a separate figure for each month
for month, month_df in combined_df.groupby('Month'):
title_page(plt, pdf, month, 16)

plot_data(plt, pdf, month_df,
[COLUMNS['ws_temp_c'], COLUMNS['ws_humidity']],
tr('Air Temperature and Humidity') + f' {month}', None,
[tr('Temperature [°C]'), tr('Relative Humidity [%]')],
[COLORS['ws_temp_c'], COLORS['ws_humidity']],
tr('Daily Avg.'), ['k', 'k'])

# Calculate the difference between consecutive values in column "Rain Gauge"

#rain_df = month_df.iloc[:, COLUMNS['rain_mm']].diff().fillna(0)
#rain_df = rain_df[rain_df > 0]
rain_df = month_df[month_df.iloc[:, COLUMNS['rain_mm']] != 0]
rain_diff_df = rain_df.iloc[:, COLUMNS['rain_mm']].diff().fillna(0)
plot_rain(plt, pdf, rain_diff_df, rain_df, COLUMNS['rain_mm'],
tr('Rain') + f' {month}', None,
[tr('Rain [mm]'), tr('Rain [mm] (Rain Gauge)')],
COLORS['rain_mm'])

plot_wind(plt, pdf, month_df,
[COLUMNS['wind_avg'], COLUMNS['wind_gust'], COLUMNS['wind_direction']],
tr('Wind') +f' {month}', None,
[tr('Average [m/s]'), tr('Gusts [m/s]'), tr('Direction [°]')],
[COLORS['wind_avg'], COLORS['wind_gust'], COLORS['wind_direction']])

plot_data(plt, pdf, month_df,
[COLUMNS['battery_voltage']],
tr('Battery Voltage'), None, [tr('Voltage [mV]')],
[COLORS['battery_voltage']], tr('Daily Avg.'), [None])
Binary file added extras/reports/weather_report.pdf
Binary file not shown.

0 comments on commit e6fe10f

Please sign in to comment.