-
Notifications
You must be signed in to change notification settings - Fork 4
literature
- Battistin C, Dunn B, Roudi Y (2017). Learning with unknowns: analyzing biological data in the presence of hidden variables. Current Opinion in Systems Biology. 2017;
-
Ioffe ML, Berry~II MJ (2016). The StructuredLow Temperature'Phase of the Retinal Population Code. arXiv preprint arXiv:160805751.
-
Rostami V, Mana PP, Helias M (2016). Pairwise maximum-entropy models and their Glauber dynamics: bimodality, bistability, non-ergodicity problems, and their elimination via inhibition. arXiv preprint arXiv:160504740.
-
Nonnenmacher M, Behrens C, Berens P, Bethge M, Macke, JH (2016). Signatures of criticality arise in simple neural population models with correlations. arXiv preprint arXiv:1603.00097.
-
Tkacik G, Mora T, Marre O, Amodei D, Palmer SE, Berry MJ, et~al. (2015) Thermodynamics and signatures of criticality in a network of neurons. Proceedings of the National Academy of Sciences. 2015;112(37):11508--11513.
-
Mora T, Deny S, Marre O (2015). Dynamical criticality in the collective activity of a population of retinal neurons. Physical review letters. 2015;114(7):078105.
-
Tkacik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry~II MJ (2014). Searching for collective behavior in a large network of sensory neurons. PLoS Comput Biol. 2014;10(1):e1003408.
-
Saremi S, Sejnowski TJ (2014). On Criticality in High-Dimensional Data. Neural Comput. 2014 Jul;26(7):1329--1339.
-
Barreiro AK, Gjorgjieva J, Rieke F, Shea-Brown E (2014). When do microcircuits produce beyond-pairwise correlations? Front Comput Neurosci. 2014;8:10.
-
Marsili M, Mastromatteo I, Roudi Y (2013). On sampling and modeling complex systems. Journal of Statistical Mechanics: Theory and Experiment. 2013;2013(09):P09003.
-
Stephens GJ, Mora T, Tkacik G, Bialek W (2013). Statistical thermodynamics of natural images. Phys Rev Lett. 2013 Jan;110(1):018701.
-
Tyrcha J, Roudi Y, Marsili M, Hertz J (2013). The effect of nonstationarity on models inferred from neural data. Journal of Statistical Mechanics: Theory and Experiment. 2013;2013(03):P03005.
-
Tkacik G, Marre O, Mora T, Amodei D, Berry~II MJ, Bialek W (2013). The simplest maximum entropy model for collective behavior in a neural network. Journal of Statistical Mechanics: Theory and Experiment. 2013;2013(03):P03011.
-
Schwartz G, Macke J, Amodei D, Tang H, Berry~II MJ (2012). Low error discrimination using a correlated population code. J Neurophysiol. 2012;108(4):1069--88.
-
Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, et~al (2012). Statistical mechanics for natural flocks of birds. Proceedings of the National Academy of Sciences. 2012;109(13):4786--4791.
-
Macke JH, Opper M, Bethge M (2011). Common input explains higher-order correlations and entropy in a simple model of neural population activity. Physical Review Letters. 2011;106(20):208102.
-
Mastromatteo I, Marsili M (2011). On the criticality of inferred models. Journal of Statistical Mechanics: Theory and Experiment. 2011;2011(10):P10012.
-
Yu S, Yang H, Nakahara H, Santos GS, Nikolic D, Plenz D (2011). Higher-order interactions characterized in cortical activity. J Neurosci. 2011;31(48):17514--17526.
-
Lyamzin DR, Macke JH, Lesica NA (2010). Modeling population spike trains with specified time-varying spike rates, trial-to-trial variability, and pairwise signal and noise correlations. Frontiers in computational neuroscience. 2010;4.
-
Mora T, Walczak AM, Bialek W, Callan CG (2010). Maximum entropy models for antibody diversity. Proceedings of the National Academy of Sciences. 2010;107(12):5405--5410.
-
Ohiorhenuan IE, Mechler F, Purpura KP, Schmid AM, Hu Q, Victor JD (2010). Sparse coding and high-order correlations in fine-scale cortical networks. Nature. 2010;466(7306):617--621.
-
Macke JH, Berens P, Ecker AS, Tolias AS, Bethge M (2009). Generating spike trains with specified correlation coefficients. Neural computation 21.2 (2009): 397-423.
-
Tkacik G, Schneidman E, Berry~II MJ, Bialek W (2009). Spin glass models for a network of real neurons. arXiv:q-bio/0611072v2.
- Broderick T, Dudik M, Tkacik G, Schapire RE, Bialek W (2007). Faster solutions of the inverse pairwise Ising problem. arXiv. 2007;0712.2437v2.
-
Schneidman E, Berry MJn, Segev R, Bialek W (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature. 2006;440(7087):1007--12.
-
Shlens J, Field GD, Gauthier JL, Grivich MI, Petrusca D, Sher A, et~al (2006). The structure of multi-neuron firing patterns in primate retina. J Neurosci. 2006;26(32):8254--66.
-
Tkacik G, Schneidman E, {Berry II} MJ, Bialek W (2006). Ising models for networks of real neurons. arXiv preprint. 2006;0611072v1.
-
Dudik M, Schapire RE (2006). Maximum entropy distribution estimation with generalized regularization. Learning Theory. Springer; 2006. p. 123--138.
-
Altun Y, Smola A (2006). Unifying divergence minimization and statistical inference via convex duality. Learning theory. Springer; 2006. p. 139--153.
- Amari Si, Nakahara H, Wu S, Sakai Y (2003). Synchronous firing and higher-order interactions in neuron pool. Neural Computation. 2003;15(1):127--142.
- Cox, DR, Nanny W (2002). On some models for multivariate binary variables parallel in complexity with the multivariate Gaussian distribution. Biometrika 89.2 (2002): 462-469.
- Mezard M, Parisi G, Virasoro M (1987). Spin Glass Theory and Beyond Singapore: Word Scientific; 1987.
- Kirkpatrick S, Gelatt CD, Vecchi MP, et~al (1983). Optimization by simulated annealing. science. 1983;220(4598):671--680.
- Sherrington D, Kirkpatrick S (1975). Solvable model of a spin-glass. Physical review letters. 1975;35(26):1792.
- Jaynes ET(1957). Information theory and statistical mechanics. Physical review. 1957;106(4):620.
- Radhakrishna~Rao C (1945). Information and accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society. 1945;37(3):81--91.