-
Notifications
You must be signed in to change notification settings - Fork 232
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #566 from luxonis/human_pose
Add human-pose-estimation-0001 support
- Loading branch information
Showing
2 changed files
with
203 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,195 @@ | ||
import cv2 | ||
import numpy as np | ||
|
||
from depthai_sdk import toTensorResult, Previews | ||
|
||
keypointsMapping = ['Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr', 'R-Hip', 'R-Knee', 'R-Ank', | ||
'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear'] | ||
POSE_PAIRS = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], [9, 10], [1, 11], [11, 12], [12, 13], | ||
[1, 0], [0, 14], [14, 16], [0, 15], [15, 17], [2, 17], [5, 16]] | ||
mapIdx = [[31, 32], [39, 40], [33, 34], [35, 36], [41, 42], [43, 44], [19, 20], [21, 22], [23, 24], [25, 26], [27, 28], | ||
[29, 30], [47, 48], [49, 50], [53, 54], [51, 52], [55, 56], [37, 38], [45, 46]] | ||
colors = [[0, 100, 255], [0, 100, 255], [0, 255, 255], [0, 100, 255], [0, 255, 255], [0, 100, 255], [0, 255, 0], | ||
[255, 200, 100], [255, 0, 255], [0, 255, 0], [255, 200, 100], [255, 0, 255], [0, 0, 255], [255, 0, 0], | ||
[200, 200, 0], [255, 0, 0], [200, 200, 0], [0, 0, 0]] | ||
|
||
|
||
def getKeypoints(probMap, threshold=0.2): | ||
mapSmooth = cv2.GaussianBlur(probMap, (3, 3), 0, 0) | ||
mapMask = np.uint8(mapSmooth > threshold) | ||
keypoints = [] | ||
contours = None | ||
try: | ||
# OpenCV4.x | ||
contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||
except: | ||
# OpenCV3.x | ||
_, contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) | ||
|
||
for cnt in contours: | ||
blobMask = np.zeros(mapMask.shape) | ||
blobMask = cv2.fillConvexPoly(blobMask, cnt, 1) | ||
maskedProbMap = mapSmooth * blobMask | ||
_, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap) | ||
keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],)) | ||
|
||
return keypoints | ||
|
||
|
||
def getValidPairs(outputs, w, h, detectedKeypoints): | ||
validPairs = [] | ||
invalidPairs = [] | ||
nInterpSamples = 10 | ||
pafScoreTh = 0.2 | ||
confTh = 0.4 | ||
for k in range(len(mapIdx)): | ||
|
||
pafA = outputs[0, mapIdx[k][0], :, :] | ||
pafB = outputs[0, mapIdx[k][1], :, :] | ||
pafA = cv2.resize(pafA, (w, h)) | ||
pafB = cv2.resize(pafB, (w, h)) | ||
candA = detectedKeypoints[POSE_PAIRS[k][0]] | ||
|
||
candB = detectedKeypoints[POSE_PAIRS[k][1]] | ||
|
||
nA = len(candA) | ||
nB = len(candB) | ||
|
||
if (nA != 0 and nB != 0): | ||
validPair = np.zeros((0, 3)) | ||
for i in range(nA): | ||
maxJ = -1 | ||
maxScore = -1 | ||
found = 0 | ||
for j in range(nB): | ||
d_ij = np.subtract(candB[j][:2], candA[i][:2]) | ||
norm = np.linalg.norm(d_ij) | ||
if norm: | ||
d_ij = d_ij / norm | ||
else: | ||
continue | ||
interp_coord = list(zip(np.linspace(candA[i][0], candB[j][0], num=nInterpSamples), | ||
np.linspace(candA[i][1], candB[j][1], num=nInterpSamples))) | ||
pafInterp = [] | ||
for k in range(len(interp_coord)): | ||
pafInterp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))], | ||
pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))]]) | ||
pafScores = np.dot(pafInterp, d_ij) | ||
avgPafScore = sum(pafScores) / len(pafScores) | ||
|
||
if (len(np.where(pafScores > pafScoreTh)[0]) / nInterpSamples) > confTh: | ||
if avgPafScore > maxScore: | ||
maxJ = j | ||
maxScore = avgPafScore | ||
found = 1 | ||
if found: | ||
validPair = np.append(validPair, [[candA[i][3], candB[maxJ][3], maxScore]], axis=0) | ||
|
||
validPairs.append(validPair) | ||
else: | ||
invalidPairs.append(k) | ||
validPairs.append([]) | ||
return validPairs, invalidPairs | ||
|
||
|
||
def getPersonwiseKeypoints(validPairs, invalidPairs, keypointsList): | ||
personwiseKeypoints = -1 * np.ones((0, 19)) | ||
|
||
for k in range(len(mapIdx)): | ||
if k not in invalidPairs: | ||
partAs = validPairs[k][:, 0] | ||
partBs = validPairs[k][:, 1] | ||
indexA, indexB = np.array(POSE_PAIRS[k]) | ||
|
||
for i in range(len(validPairs[k])): | ||
found = 0 | ||
personIdx = -1 | ||
for j in range(len(personwiseKeypoints)): | ||
if personwiseKeypoints[j][indexA] == partAs[i]: | ||
personIdx = j | ||
found = 1 | ||
break | ||
|
||
if found: | ||
personwiseKeypoints[personIdx][indexB] = partBs[i] | ||
personwiseKeypoints[personIdx][-1] += keypointsList[partBs[i].astype(int), 2] + validPairs[k][i][ | ||
2] | ||
|
||
elif not found and k < 17: | ||
row = -1 * np.ones(19) | ||
row[indexA] = partAs[i] | ||
row[indexB] = partBs[i] | ||
row[-1] = sum(keypointsList[validPairs[k][i, :2].astype(int), 2]) + validPairs[k][i][2] | ||
personwiseKeypoints = np.vstack([personwiseKeypoints, row]) | ||
return personwiseKeypoints | ||
|
||
|
||
threshold = 0.3 | ||
nPoints = 18 | ||
detectedKeypoints = [] | ||
|
||
|
||
def decode(nnManager, packet): | ||
heatmaps = np.array(packet.getLayerFp16('Mconv7_stage2_L2')).reshape((1, 19, 32, 57)).astype('float32') | ||
pafs = np.array(packet.getLayerFp16('Mconv7_stage2_L1')).reshape((1, 38, 32, 57)).astype('float32') | ||
outputs = np.concatenate((heatmaps, pafs), axis=1) | ||
w, h = nnManager.inputSize | ||
|
||
detectedKeypoints = [] | ||
keypointsList = np.zeros((0, 3)) | ||
keypointId = 0 | ||
|
||
for part in range(nPoints): | ||
probMap = outputs[0, part, :, :] | ||
probMap = cv2.resize(probMap, (w, h)) # (456, 256) | ||
keypoints = getKeypoints(probMap, threshold) | ||
keypointsWithId = [] | ||
|
||
for i in range(len(keypoints)): | ||
keypointsWithId.append(keypoints[i] + (keypointId,)) | ||
keypointsList = np.vstack([keypointsList, keypoints[i]]) | ||
keypointId += 1 | ||
|
||
detectedKeypoints.append(keypointsWithId) | ||
|
||
validPairs, invalidPairs = getValidPairs(outputs, w, h, detectedKeypoints) | ||
personwiseKeypoints = getPersonwiseKeypoints(validPairs, invalidPairs, keypointsList) | ||
keypointsLimbs = [detectedKeypoints, personwiseKeypoints, keypointsList] | ||
|
||
return keypointsLimbs | ||
|
||
|
||
def draw(nnManager, keypointsLimbs, frames): | ||
for name, frame in frames: | ||
if name == "color" and nnManager.source == "color" and not nnManager._fullFov: | ||
scaleFactor = frame.shape[0] / nnManager.inputSize[1] | ||
offsetW = int(frame.shape[1] - nnManager.inputSize[0] * scaleFactor) // 2 | ||
|
||
def scale(point): | ||
return int(point[0] * scaleFactor) + offsetW, int(point[1] * scaleFactor) | ||
elif name in (Previews.color.name, Previews.nnInput.name, "host"): | ||
scaleH = frame.shape[0] / nnManager.inputSize[1] | ||
scaleW = frame.shape[1] / nnManager.inputSize[0] | ||
|
||
def scale(point): | ||
return int(point[0] * scaleW), int(point[1] * scaleH) | ||
else: | ||
continue | ||
|
||
if len(keypointsLimbs) == 3: | ||
detectedKeypoints = keypointsLimbs[0] | ||
personwiseKeypoints = keypointsLimbs[1] | ||
keypointsList = keypointsLimbs[2] | ||
|
||
for i in range(nPoints): | ||
for j in range(len(detectedKeypoints[i])): | ||
cv2.circle(frame, scale(detectedKeypoints[i][j][0:2]), 5, colors[i], -1, cv2.LINE_AA) | ||
for i in range(17): | ||
for n in range(len(personwiseKeypoints)): | ||
index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])] | ||
if -1 in index: | ||
continue | ||
B = np.int32(keypointsList[index.astype(int), 0]) | ||
A = np.int32(keypointsList[index.astype(int), 1]) | ||
cv2.line(frame, scale((B[0], A[0])), scale((B[1], A[1])), colors[i], 3, cv2.LINE_AA) | ||
|
8 changes: 8 additions & 0 deletions
8
resources/nn/human-pose-estimation-0001/human-pose-estimation-0001.json
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
{ | ||
"nn_config": { | ||
"output_format" : "raw", | ||
"input_size": "456x256" | ||
}, | ||
"handler": "handler.py" | ||
} | ||
|