Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Remove redundant linalg.matmul_signed #98615

Merged
merged 1 commit into from
Jul 13, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -1137,74 +1137,6 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: B
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: matmul_unsigned
cpp_class_name: MatmulUnsignedOp
doc: |-
Performs an unsigned matrix multiplication of two 2D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: A
kind: input_tensor
type_var: T1
shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- !LinalgOperandDefConfig
name: B
kind: input_tensor
type_var: T2
shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- !LinalgOperandDefConfig
name: C
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
iterator_types:
- parallel
- parallel
- reduction
assignments:
- !ScalarAssign
arg: C
value: !ScalarExpression
scalar_fn:
kind: binary
fn_name: add
operands:
- !ScalarExpression
scalar_arg: C
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: mul
operands:
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
- !ScalarExpression
scalar_fn:
kind: type
fn_name: cast_unsigned
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp
Expand Down
18 changes: 0 additions & 18 deletions mlir/python/mlir/dialects/linalg/opdsl/ops/core_named_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -388,24 +388,6 @@ def matmul(
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])


@linalg_structured_op
def matmul_unsigned(
A=TensorDef(T1, S.M, S.K),
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True),
):
"""Performs an unsigned matrix multiplication of two 2D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
domain(D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.m, D.n] += TypeFn.cast_unsigned(U, A[D.m, D.k]) * TypeFn.cast_unsigned(
U, B[D.k, D.n]
)


@linalg_structured_op
def quantized_matmul(
A=TensorDef(T1, S.M, S.K),
Expand Down
15 changes: 9 additions & 6 deletions mlir/test/Dialect/Linalg/generalize-named-polymorphic-ops.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -79,8 +79,9 @@ func.func @generalize_matmul_tensor_f16f64i32(%A : tensor<16x8xf16>, %B: tensor<
// -----

func.func @generalize_matmul_unsigned_tensor_i16i64i32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul_unsigned ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}

Expand All @@ -92,8 +93,9 @@ func.func @generalize_matmul_unsigned_tensor_i16i64i32(%A : tensor<16x8xi16>, %B
// -----

func.func @generalize_matmul_unsigned_tensor_i16i64f32(%A : tensor<16x8xi16>, %B: tensor<8x32xi64>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul_unsigned ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xi16>, tensor<8x32xi64>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
return %0: tensor<16x32xf32>
}

Expand All @@ -105,8 +107,9 @@ func.func @generalize_matmul_unsigned_tensor_i16i64f32(%A : tensor<16x8xi16>, %B
// -----

func.func @generalize_matmul_unsigned_tensor_f16f64i32(%A : tensor<16x8xf16>, %B: tensor<8x32xf64>, %C: tensor<16x32xi32>) -> tensor<16x32xi32> {
%0 = linalg.matmul_unsigned ins(%A, %B: tensor<16x8xf16>, tensor<8x32xf64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
%0 = linalg.matmul { cast = #linalg.type_fn<cast_unsigned> }
ins(%A, %B: tensor<16x8xf16>, tensor<8x32xf64>)
outs(%C: tensor<16x32xi32>) -> tensor<16x32xi32>
return %0: tensor<16x32xi32>
}

Expand Down
Loading