Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Adding a proper function to add the prefixes #30

Merged
merged 1 commit into from
Aug 9, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 33 additions & 11 deletions giga_cherche/models/colbert.py
Original file line number Diff line number Diff line change
Expand Up @@ -368,8 +368,8 @@ def __init__(
self.model_card_data.register_model(self)

# this will add the query and document prefix to the tokenizer vocab if they are not already there and resize the embeddings accordingly
# self.tokenizer.add_tokens([self.query_prefix, self.document_prefix])
# self._first_module().auto_model.resize_token_embeddings(len(self.tokenizer))
self.tokenizer.add_tokens([self.query_prefix, self.document_prefix])
self._first_module().auto_model.resize_token_embeddings(len(self.tokenizer))

self.document_prefix_id = self.tokenizer.convert_tokens_to_ids(
self.document_prefix
Expand Down Expand Up @@ -1126,6 +1126,12 @@ def get_max_seq_length(self) -> int | None:

return None

def insert_prefix_token(self, tensor, prefix_id):
prefix_tensor = torch.full(
(tensor.size(0), 1), prefix_id, dtype=tensor.dtype, device=tensor.device
)
return torch.cat([tensor[:, :1], prefix_tensor, tensor[:, 1:]], dim=1)

def tokenize(
self,
texts: Union[list[str], list[dict], list[tuple[str, str]]],
Expand All @@ -1142,17 +1148,22 @@ def tokenize(
dict[str, torch.Tensor]: A dictionary of tensors with the tokenized texts. Common keys are "input_ids",
"attention_mask", and "token_type_ids".
"""
# TODO: add the skiplist
# Add placeholder for the document/query prefix
texts = [". " + text for text in texts]
if is_query:
# TODO: This is a hack to asymetrically set the max_seq_length for the query/document, change it once the Transformer module tokenize function expose a max_length argument
self._first_module().max_seq_length = self.query_length
features = self._first_module().tokenize(texts, padding="max_length")
# Remplace the second token by the query prefix
# TODO: Do this in a prettier way. Okay we cannot directly add the text in the string, but this is not robust (multiple ids, ...)
# e.g : # features["input_ids"] = torch.cat((features["input_ids"][:, :1], self.document_query_id, ids[:, 1:]), dim=1) ; features["attention_mask"] = torch.cat((features["attention_mask"][:, :1], torch.ones((features["attention_mask"].shape[0], 1), dtype=torch.int8), features["attention_mask"][:, 1:]), dim=1)
features["input_ids"][:, 1] = self.query_prefix_id
# Create a new tensor with the query prefix ID inserted after the first token
features["input_ids"] = self.insert_prefix_token(
features["input_ids"], self.query_prefix_id
)
# Update the attention mask to account for the new token
features["attention_mask"] = self.insert_prefix_token(
features["attention_mask"], 1
)
if "token_type_ids" in features:
features["token_type_ids"] = self.insert_prefix_token(
features["token_type_ids"], 0
)
# In the original ColBERT, the original tokens do not attend to the expansion tokens (but the expansion tokens attend to original tokens)
if self.attend_to_expansion_tokens:
# Fill the attention mask with ones (we attend to "padding" tokens used for expansion)
Expand All @@ -1164,8 +1175,19 @@ def tokenize(
if pad_document:
extra_parameters["padding"] = "max_length"
features = self._first_module().tokenize(texts, **extra_parameters)
# Remplace the second token by the document prefix
features["input_ids"][:, 1] = self.document_prefix_id
# Create a new tensor with the document prefix ID inserted after the first token
features["input_ids"] = self.insert_prefix_token(
features["input_ids"], self.document_prefix_id
)
# Update the attention mask to account for the new token
features["attention_mask"] = self.insert_prefix_token(
features["attention_mask"], 1
)
if "token_type_ids" in features:
features["token_type_ids"] = self.insert_prefix_token(
features["token_type_ids"], 0
)

return features

def get_sentence_features(self, *features):
Expand Down
Loading