-
Notifications
You must be signed in to change notification settings - Fork 331
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
refactor: introduce Ideal.IsTwoSided
class for quotients of noncommutative rings
#17930
base: Ideal.mul
Are you sure you want to change the base?
Conversation
alreadydone
commented
Oct 18, 2024
- depends on: refactor: generalize Mul of Submodule and SMul of Ideal on Submodule to noncommutative setting #17708
PR summary cb0757f08d
|
File | Base Count | Head Count | Change |
---|---|---|---|
Mathlib.RingTheory.Ideal.Colon | 945 | 946 | +1 (+0.11%) |
Import changes for all files
Files | Import difference |
---|---|
Mathlib.RingTheory.Ideal.Colon |
1 |
Mathlib.LinearAlgebra.TensorProduct.Quotient |
68 |
Declarations diff
+ IsTorsionBySet.semilinearMap
+ IsTwoSided
+ LinearEquiv.annihilator_eq
+ LinearMap.annihilator_le_of_injective
+ LinearMap.annihilator_le_of_surjective
+ Module.annihilator
+ Module.mem_annihilator
+ divisionRing
+ exists_right_inv_of_exists_left_inv
+ iSup_mul
+ instance (priority := 100) quotientAlgebra {R} [CommRing R] {I : Ideal A} [I.IsTwoSided]
+ instance : (I ^ n).IsTwoSided
+ instance : (Module.annihilator R M).IsTwoSided := inferInstanceAs (RingHom.ker _).IsTwoSided
+ instance : (ker f).IsTwoSided := inferInstanceAs (Ideal.comap f ⊥).IsTwoSided
+ instance : Coe R (R ⧸ I)
+ instance : I.IsTwoSided := ⟨fun b ha ↦ mul_comm b _ ▸ I.smul_mem _ ha⟩
+ instance : IsCoatomic (Ideal α) := CompleteLattice.coatomic_of_top_compact isCompactElement_top
+ instance : IsTwoSided (⊤ : Ideal α) := ⟨fun _ _ ↦ trivial⟩
+ instance : IsTwoSided (⊥ : Ideal α) := ⟨fun _ h ↦ by rw [h, zero_mul]; exact zero_mem _⟩
+ instance : NonUnitalSemiring (Submodule R A)
+ instance : Pow (Submodule R A) ℕ
+ instance : SMul (AddSubmonoid R) (AddSubmonoid A)
+ instance : SMul (Ideal R) (Submodule R M)
+ instance [I.IsTwoSided] : (I.pi ι).IsTwoSided
+ instance [I.IsTwoSided] : Module (R ⧸ I) (M ⧸ I • (⊤ : Submodule R M))
+ instance [J.IsTwoSided] : (I * J).IsTwoSided
+ instance [K.IsTwoSided] : (comap f K).IsTwoSided
+ instance [NoZeroDivisors R] : NoZeroDivisors (Ideal R)
+ instance {R : Type*} [CommSemiring R] {S : Type*} [Semiring S] [Algebra R S]
+ instance {ι} (I : ι → Ideal α) [∀ i, (I i).IsTwoSided] : (⨅ i, I i).IsTwoSided
+ isTorsionBySet_iff_subset_annihilator
+ isTorsionBySet_of_subset
+ isTorsionBy_iff_mem_annihilator
+ mul_eq_map₂
+ mul_iSup
+ mul_one
+ mul_smul
+ mul_sup
+ npowRec_add
+ npowRec_succ
+ pow_eq_npowRec
+ pow_one
+ pow_succ'
+ pow_zero
+ ring
+ smul_eq_map₂
+ smul_induction_on
+ smul_le_smul
+ smul_mem_smul
+ sup_mul
+ toSpanSingleton_eq_algebra_linearMap
++ pow_add
++ pow_succ
++- smul_le
+-+ mul
- _root_.LinearEquiv.annihilator_eq
- _root_.LinearMap.annihilator_le_of_injective
- _root_.LinearMap.annihilator_le_of_surjective
- _root_.Module.annihilator
- _root_.Module.mem_annihilator
- hasSMul'
- instHasQuotient
- instance (priority := 100) quotientAlgebra {I : Ideal A} [Algebra R A] :
- instance : IsCoatomic (Ideal α) := by
- instance : Module (R ⧸ I) (M ⧸ I • (⊤ : Submodule R M))
- instance : Mul (Ideal R)
- instance : Unique (R ⧸ (⊤ : Ideal R))
- instance {I : Ideal R} : Coe R (R ⧸ I)
- instance {R : Type*} [CommSemiring R] [NoZeroDivisors R] : NoZeroDivisors (Ideal R)
- instance {R : Type*} [CommSemiring R] {S : Type*} [CommRing S] [Algebra R S]
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh
contains some details about this script.
This PR/issue depends on: |
Ideal.IsTwoSided
class for generalization to noncommutative settingIdeal.IsTwoSided
class for quotients of noncommutative rings