Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - chore: remove remaining cdots that were not · #12146

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Mathlib/Algebra/GroupPower/Order.lean
Original file line number Diff line number Diff line change
Expand Up @@ -532,7 +532,7 @@ namespace Nat
variable {n : ℕ} {f : α → ℕ}

/-- See also `pow_left_strictMonoOn`. -/
protected lemma pow_left_strictMono (hn : n ≠ 0) : StrictMono (. ^ n : ℕ → ℕ) :=
protected lemma pow_left_strictMono (hn : n ≠ 0) : StrictMono (· ^ n : ℕ → ℕ) :=
fun _ _ h ↦ Nat.pow_lt_pow_left h hn
#align nat.pow_left_strict_mono Nat.pow_left_strictMono

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Polynomial/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ instance semiring : Semiring R[X] :=
toMul := Polynomial.mul'
toZero := Polynomial.zero
toOne := Polynomial.one
nsmul := (..)
nsmul := (··)
npow := fun n x => (x ^ n) }
#align polynomial.semiring Polynomial.semiring

Expand Down Expand Up @@ -1190,7 +1190,7 @@ instance ring : Ring R[X] :=
toIntCast := Polynomial.intCast
toNeg := Polynomial.neg'
toSub := Polynomial.sub
zsmul := ((..) : ℤ → R[X] → R[X]) }
zsmul := ((··) : ℤ → R[X] → R[X]) }
#align polynomial.ring Polynomial.ring

@[simp]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Fin/Tuple/Curry.lean
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@ variable {n : ℕ} {p : Fin n → Type u} {τ : Type u}
theorem curry_uncurry (f : Function.FromTypes p τ) : curry (uncurry f) = f := by
induction n with
| zero => rfl
| succ n ih => exact funext (ih $ f .)
| succ n ih => exact funext (ih $ f ·)

@[simp]
theorem uncurry_curry (f : ((i : Fin n) → p i) → τ) :
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Data/Set/Subset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -74,7 +74,7 @@ lemma preimage_val_sInter : A ↓∩ (⋂₀ S) = ⋂₀ { (A ↓∩ B) | B ∈
erw [sInter_image]
simp_rw [sInter_eq_biInter, preimage_iInter]

lemma preimage_val_sInter_eq_sInter : A ↓∩ (⋂₀ S) = ⋂₀ ((A ↓∩ .) '' S) := by
lemma preimage_val_sInter_eq_sInter : A ↓∩ (⋂₀ S) = ⋂₀ ((A ↓∩ ·) '' S) := by
simp only [preimage_sInter, sInter_image]

lemma eq_of_preimage_val_eq_of_subset (hB : B ⊆ A) (hC : C ⊆ A) (h : A ↓∩ B = A ↓∩ C) : B = C := by
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -394,7 +394,7 @@ def colimitPresheafObjIsoComponentwiseLimit (F : J ⥤ PresheafedSpace.{_, _, v}
refine' (F.obj (unop X)).presheaf.mapIso (eqToIso _)
simp only [Functor.op_obj, unop_op, op_inj_iff, Opens.map_coe, SetLike.ext'_iff,
Set.preimage_preimage]
refine congr_arg (Set.preimage . U.1) (funext fun x => ?_)
refine congr_arg (Set.preimage · U.1) (funext fun x => ?_)
erw [← TopCat.comp_app]
congr
exact ι_preservesColimitsIso_inv (forget C) F (unop X)
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/GroupTheory/Exponent.lean
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ open MulOpposite in
theorem _root_.MulOpposite.exponent : exponent (MulOpposite G) = exponent G := by
simp only [Monoid.exponent, ExponentExists]
congr!
all_goals exact ⟨(op_injective <| · <| op ·), (unop_injective <| . <| unop .)⟩
all_goals exact ⟨(op_injective <| · <| op ·), (unop_injective <| · <| unop ·)⟩

@[to_additive]
theorem ExponentExists.isOfFinOrder (h : ExponentExists G) {g : G} : IsOfFinOrder g :=
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/GroupTheory/HNNExtension.lean
Original file line number Diff line number Diff line change
Expand Up @@ -591,7 +591,7 @@ open NormalWord
theorem of_injective : Function.Injective (of : G → HNNExtension G A B φ) := by
rcases TransversalPair.nonempty G A B with ⟨d⟩
refine Function.Injective.of_comp
(f := ((..) : HNNExtension G A B φ → NormalWord d → NormalWord d)) ?_
(f := ((··) : HNNExtension G A B φ → NormalWord d → NormalWord d)) ?_
intros _ _ h
exact eq_of_smul_eq_smul (fun w : NormalWord d =>
by simp_all [Function.funext_iff, of_smul_eq_smul])
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/GroupTheory/PushoutI.lean
Original file line number Diff line number Diff line change
Expand Up @@ -596,7 +596,7 @@ theorem of_injective (hφ : ∀ i, Function.Injective (φ i)) (i : ι) :
let _ := Classical.decEq ι
let _ := fun i => Classical.decEq (G i)
refine Function.Injective.of_comp
(f := ((..) : PushoutI φ → NormalWord d → NormalWord d)) ?_
(f := ((··) : PushoutI φ → NormalWord d → NormalWord d)) ?_
intros _ _ h
exact eq_of_smul_eq_smul (fun w : NormalWord d =>
by simp_all [Function.funext_iff, of_smul_eq_smul])
Expand All @@ -607,7 +607,7 @@ theorem base_injective (hφ : ∀ i, Function.Injective (φ i)) :
let _ := Classical.decEq ι
let _ := fun i => Classical.decEq (G i)
refine Function.Injective.of_comp
(f := ((..) : PushoutI φ → NormalWord d → NormalWord d)) ?_
(f := ((··) : PushoutI φ → NormalWord d → NormalWord d)) ?_
intros _ _ h
exact eq_of_smul_eq_smul (fun w : NormalWord d =>
by simp_all [Function.funext_iff, base_smul_eq_smul])
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/ModelTheory/Definability.lean
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ theorem Definable.map_expansion {L' : FirstOrder.Language} [L'.Structure M] (h :
theorem definable_iff_exists_formula_sum :
A.Definable L s ↔ ∃ φ : L.Formula (A ⊕ α), s = {v | φ.Realize (Sum.elim (↑) v)} := by
rw [Definable, Equiv.exists_congr_left (BoundedFormula.constantsVarsEquiv)]
refine exists_congr (fun φ => iff_iff_eq.2 (congr_arg (s = .) ?_))
refine exists_congr (fun φ => iff_iff_eq.2 (congr_arg (s = ·) ?_))
ext
simp only [Formula.Realize, BoundedFormula.constantsVarsEquiv, constantsOn, mk₂_Relations,
BoundedFormula.mapTermRelEquiv_symm_apply, mem_setOf_eq]
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/ModelTheory/Syntax.lean
Original file line number Diff line number Diff line change
Expand Up @@ -667,11 +667,11 @@ def toFormula : ∀ {n : ℕ}, L.BoundedFormula α n → L.Formula (Sum α (Fin

/-- take the disjunction of a finite set of formulas -/
noncomputable def iSup (s : Finset β) (f : β → L.BoundedFormula α n) : L.BoundedFormula α n :=
(s.toList.map f).foldr (..) ⊥
(s.toList.map f).foldr (··) ⊥

/-- take the conjunction of a finite set of formulas -/
noncomputable def iInf (s : Finset β) (f : β → L.BoundedFormula α n) : L.BoundedFormula α n :=
(s.toList.map f).foldr (..) ⊤
(s.toList.map f).foldr (··) ⊤


variable {l : ℕ} {φ ψ : L.BoundedFormula α l} {θ : L.BoundedFormula α l.succ}
Expand Down
14 changes: 7 additions & 7 deletions Mathlib/Order/CompletePartialOrder.lean
Original file line number Diff line number Diff line change
Expand Up @@ -39,31 +39,31 @@ Complete partial orders are partial orders where every directed set has a least
-/
class CompletePartialOrder (α : Type*) extends PartialOrder α, SupSet α where
/-- For each directed set `d`, `sSup d` is the least upper bound of `d`. -/
lubOfDirected : ∀ d, DirectedOn (..) d → IsLUB d (sSup d)
lubOfDirected : ∀ d, DirectedOn (··) d → IsLUB d (sSup d)

variable [CompletePartialOrder α] [Preorder β] {f : ι → α} {d : Set α} {a : α}

protected lemma DirectedOn.isLUB_sSup : DirectedOn (..) d → IsLUB d (sSup d) :=
protected lemma DirectedOn.isLUB_sSup : DirectedOn (··) d → IsLUB d (sSup d) :=
CompletePartialOrder.lubOfDirected _

protected lemma DirectedOn.le_sSup (hd : DirectedOn (..) d) (ha : a ∈ d) : a ≤ sSup d :=
protected lemma DirectedOn.le_sSup (hd : DirectedOn (··) d) (ha : a ∈ d) : a ≤ sSup d :=
hd.isLUB_sSup.1 ha

protected lemma DirectedOn.sSup_le (hd : DirectedOn (..) d) (ha : ∀ b ∈ d, b ≤ a) : sSup d ≤ a :=
protected lemma DirectedOn.sSup_le (hd : DirectedOn (··) d) (ha : ∀ b ∈ d, b ≤ a) : sSup d ≤ a :=
hd.isLUB_sSup.2 ha

protected lemma Directed.le_iSup (hf : Directed (..) f) (i : ι) : f i ≤ ⨆ j, f j :=
protected lemma Directed.le_iSup (hf : Directed (··) f) (i : ι) : f i ≤ ⨆ j, f j :=
hf.directedOn_range.le_sSup <| Set.mem_range_self _

protected lemma Directed.iSup_le (hf : Directed (..) f) (ha : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a :=
protected lemma Directed.iSup_le (hf : Directed (··) f) (ha : ∀ i, f i ≤ a) : ⨆ i, f i ≤ a :=
hf.directedOn_range.sSup_le <| Set.forall_mem_range.2 ha

--TODO: We could mimic more `sSup`/`iSup` lemmas

/-- Scott-continuity takes on a simpler form in complete partial orders. -/
lemma CompletePartialOrder.scottContinuous {f : α → β} :
ScottContinuous f ↔
∀ ⦃d : Set α⦄, d.Nonempty → DirectedOn (..) d → IsLUB (f '' d) (f (sSup d)) := by
∀ ⦃d : Set α⦄, d.Nonempty → DirectedOn (··) d → IsLUB (f '' d) (f (sSup d)) := by
refine' ⟨fun h d hd₁ hd₂ ↦ h hd₁ hd₂ hd₂.isLUB_sSup, fun h d hne hd a hda ↦ ?_⟩
rw [hda.unique hd.isLUB_sSup]
exact h hne hd
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/Order/RelSeries.lean
Original file line number Diff line number Diff line change
Expand Up @@ -256,7 +256,7 @@ For two types `α, β` and relation on them `r, s`, if `f : α → β` preserves
def map (p : RelSeries r) (f : r →r s) : RelSeries s where
length := p.length
toFun := f.1.comp p
step := (f.2 <| p.step .)
step := (f.2 <| p.step ·)

@[simp] lemma map_apply (p : RelSeries r) (f : r →r s) (i : Fin (p.length + 1)) :
p.map f i = f (p i) := rfl
Expand Down Expand Up @@ -479,7 +479,7 @@ end RelSeries

/-- A type is finite dimensional if its `LTSeries` has bounded length. -/
abbrev FiniteDimensionalOrder (γ : Type*) [Preorder γ] :=
Rel.FiniteDimensional ((. < .) : γ → γ → Prop)
Rel.FiniteDimensional ((· < ·) : γ → γ → Prop)

instance FiniteDimensionalOrder.ofUnique (γ : Type*) [Preorder γ] [Unique γ] :
FiniteDimensionalOrder γ where
Expand All @@ -489,15 +489,15 @@ instance FiniteDimensionalOrder.ofUnique (γ : Type*) [Preorder γ] [Unique γ]

/-- A type is infinite dimensional if it has `LTSeries` of at least arbitrary length -/
abbrev InfiniteDimensionalOrder (γ : Type*) [Preorder γ] :=
Rel.InfiniteDimensional ((. < .) : γ → γ → Prop)
Rel.InfiniteDimensional ((· < ·) : γ → γ → Prop)

section LTSeries

variable (α) [Preorder α] [Preorder β]
/--
If `α` is a preorder, a LTSeries is a relation series of the less than relation.
-/
abbrev LTSeries := RelSeries ((. < .) : Rel α α)
abbrev LTSeries := RelSeries ((· < ·) : Rel α α)

namespace LTSeries

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Ideal/Over.lean
Original file line number Diff line number Diff line change
Expand Up @@ -396,7 +396,7 @@ theorem exists_ideal_over_prime_of_isIntegral_of_isPrime
refine' _root_.trans _ (_root_.trans (congr_arg (comap (Ideal.Quotient.mk
(comap (algebraMap R S) I))) hQ') _)
· rw [comap_comap]
exact congr_arg (comap . Q') (RingHom.ext fun r => rfl)
exact congr_arg (comap · Q') (RingHom.ext fun r => rfl)
· refine' _root_.trans (comap_map_of_surjective _ Quotient.mk_surjective _) (sup_eq_left.2 _)
simpa [← RingHom.ker_eq_comap_bot] using hIP

Expand Down
Loading