Skip to content

Commit

Permalink
remove non-existing set_options
Browse files Browse the repository at this point in the history
  • Loading branch information
adomani committed Apr 16, 2024
1 parent 9d59bba commit ee8ce85
Show file tree
Hide file tree
Showing 3 changed files with 0 additions and 5 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,6 @@ open CategoryTheory.Prod

variable [IsFiltered K]

set_option linter.haveLet false in -- `clear_value` complains
/-- This follows this proof from
* Borceux, Handbook of categorical algebra 1, Theorem 2.13.4
although with different names.
Expand Down Expand Up @@ -188,7 +187,6 @@ theorem colimitLimitToLimitColimit_surjective :
-- As a first step, we use that `K` is filtered to pick some point `k' : K` above all the `k j`
let k' : K := IsFiltered.sup (Finset.univ.image k) ∅
-- and name the morphisms as `g j : k j ⟶ k'`.
-- changing `have` to `let` causes `clear_value k'` to complain
have g : ∀ j, k j ⟶ k' := fun j => IsFiltered.toSup (Finset.univ.image k) ∅ (by simp)
clear_value k'
-- Recalling that the components of `x`, which are indexed by `j : J`, are "coherent",
Expand Down
1 change: 0 additions & 1 deletion Mathlib/CategoryTheory/Limits/Final.lean
Original file line number Diff line number Diff line change
Expand Up @@ -408,7 +408,6 @@ theorem zigzag_of_eqvGen_quot_rel {F : C ⥤ D} {d : D} {f₁ f₂ : ΣX, d ⟶

end Final

set_option linter.haveLet false in -- have := (I d).inv PUnit.unit
/-- If `colimit (F ⋙ coyoneda.obj (op d)) ≅ PUnit` for all `d : D`, then `F` is cofinal.
-/
theorem cofinal_of_colimit_comp_coyoneda_iso_pUnit
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/Tactic/NormNum/Inv.lean
Original file line number Diff line number Diff line change
Expand Up @@ -121,12 +121,10 @@ theorem isRat_inv_neg_one {α} [DivisionRing α] : {a : α} →
IsInt a (.negOfNat (nat_lit 1)) → IsInt a⁻¹ (.negOfNat (nat_lit 1))
| _, ⟨rfl⟩ => ⟨by simp [inv_neg_one]⟩

set_option linter.haveLet false in
theorem isRat_inv_neg {α} [DivisionRing α] [CharZero α] {a : α} {n d : ℕ} :
IsRat a (.negOfNat (Nat.succ n)) d → IsRat a⁻¹ (.negOfNat d) (Nat.succ n) := by
rintro ⟨_, rfl⟩
simp only [Int.negOfNat_eq]
-- changing `have` to `let`, makes the following `generalize` fail
have := invertibleOfNonzero (α := α) (Nat.cast_ne_zero.2 (Nat.succ_ne_zero n))
generalize Nat.succ n = n at *
use this; simp only [Int.ofNat_eq_coe, Int.cast_neg,
Expand Down

0 comments on commit ee8ce85

Please sign in to comment.