Skip to content

Commit

Permalink
more
Browse files Browse the repository at this point in the history
  • Loading branch information
hrmacbeth committed Oct 2, 2024
1 parent e57ee43 commit ecc94ee
Showing 1 changed file with 6 additions and 7 deletions.
13 changes: 6 additions & 7 deletions Mathlib/Analysis/Calculus/FDeriv/Symmetric.lean
Original file line number Diff line number Diff line change
Expand Up @@ -139,10 +139,10 @@ theorem Convex.taylor_approx_two_segment {v w : E} (hv : x + v ∈ interior s)
calc
‖g' t‖ = ‖(f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)) (h • w)‖ := by
rw [hg']
have : h * (t * h) = t * (h * h) := by ring
simp only [ContinuousLinearMap.coe_sub', ContinuousLinearMap.map_add, pow_two,
ContinuousLinearMap.add_apply, Pi.smul_apply, smul_sub, smul_add, smul_smul, ← sub_sub,
ContinuousLinearMap.coe_smul', Pi.sub_apply, ContinuousLinearMap.map_smul, this]
congrm ‖?_‖
simp only [ContinuousLinearMap.sub_apply, ContinuousLinearMap.add_apply,
ContinuousLinearMap.smul_apply, map_add, map_smul]
module
_ ≤ ‖f' (x + h • v + (t * h) • w) - f' x - f'' (h • v + (t * h) • w)‖ * ‖h • w‖ :=
(ContinuousLinearMap.le_opNorm _ _)
_ ≤ ε * ‖h • v + (t * h) • w‖ * ‖h • w‖ := by
Expand All @@ -169,8 +169,8 @@ theorem Convex.taylor_approx_two_segment {v w : E} (hv : x + v ∈ interior s)
simp only [g, Nat.one_ne_zero, add_zero, one_mul, zero_div, zero_mul, sub_zero,
zero_smul, Ne, not_false_iff, zero_pow, reduceCtorEq]
abel
· simp only [Real.norm_eq_abs, abs_mul, add_nonneg (norm_nonneg v) (norm_nonneg w), abs_of_nonneg,
hpos.le, mul_assoc, norm_nonneg, abs_pow]
· simp (discharger := positivity) only [Real.norm_eq_abs, abs_mul, abs_of_nonneg, abs_pow]
ring

/-- One can get `f'' v w` as the limit of `h ^ (-2)` times the alternate sum of the values of `f`
along the vertices of a quadrilateral with sides `h v` and `h w` based at `x`.
Expand All @@ -183,7 +183,6 @@ theorem Convex.isLittleO_alternate_sum_square {v w : E} (h4v : x + (4 : ℝ) •
fun h => h ^ 2 := by
have A : (1 : ℝ) / 2 ∈ Ioc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩
have B : (1 : ℝ) / 2 ∈ Icc (0 : ℝ) 1 := ⟨by norm_num, by norm_num⟩
have C : ∀ w : E, (2 : ℝ) • w = 2 • w := fun w => by simp only [two_smul]
have h2v2w : x + (2 : ℝ) • v + (2 : ℝ) • w ∈ interior s := by
convert s_conv.interior.add_smul_sub_mem h4v h4w B using 1
module
Expand Down

0 comments on commit ecc94ee

Please sign in to comment.