Skip to content

Commit

Permalink
feat(Normed/Group): add nndist_one_right etc (#17954)
Browse files Browse the repository at this point in the history
Add

- `nndist_one_right`, `nndist_zero_right`, `nndist_one_left`, `nndist_zero_left`;
- `edist_one_right`, `edist_zero_right`, `edist_one_left`, `edist_zero_left`.
  • Loading branch information
urkud committed Oct 19, 2024
1 parent 227950d commit e9f0a88
Show file tree
Hide file tree
Showing 2 changed files with 16 additions and 4 deletions.
14 changes: 14 additions & 0 deletions Mathlib/Analysis/Normed/Group/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -635,6 +635,13 @@ theorem nndist_eq_nnnorm_div (a b : E) : nndist a b = ‖a / b‖₊ :=

alias nndist_eq_nnnorm := nndist_eq_nnnorm_sub

@[to_additive (attr := simp)]
theorem nndist_one_right (a : E) : nndist a 1 = ‖a‖₊ := by simp [nndist_eq_nnnorm_div]

@[to_additive (attr := simp)]
theorem edist_one_right (a : E) : edist a 1 = ‖a‖₊ := by
rw [edist_nndist, nndist_one_right]

@[to_additive (attr := simp) nnnorm_zero]
theorem nnnorm_one' : ‖(1 : E)‖₊ = 0 :=
NNReal.eq norm_one'
Expand All @@ -653,6 +660,13 @@ theorem nnnorm_mul_le' (a b : E) : ‖a * b‖₊ ≤ ‖a‖₊ + ‖b‖₊ :=
theorem nnnorm_inv' (a : E) : ‖a⁻¹‖₊ = ‖a‖₊ :=
NNReal.eq <| norm_inv' a

@[to_additive (attr := simp)]
theorem nndist_one_left (a : E) : nndist 1 a = ‖a‖₊ := by simp [nndist_eq_nnnorm_div]

@[to_additive (attr := simp)]
theorem edist_one_left (a : E) : edist 1 a = ‖a‖₊ := by
rw [edist_nndist, nndist_one_left]

open scoped symmDiff in
@[to_additive]
theorem nndist_mulIndicator (s t : Set α) (f : α → E) (x : α) :
Expand Down
6 changes: 2 additions & 4 deletions Mathlib/MeasureTheory/Function/L1Space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1375,12 +1375,10 @@ theorem edist_toL1_toL1 (f g : α → β) (hf : Integrable f μ) (hg : Integrabl
ENNReal.rpow_one, ne_eq, not_false_eq_true, div_self, ite_false]
simp [edist_eq_coe_nnnorm_sub]

@[simp]
theorem edist_toL1_zero (f : α → β) (hf : Integrable f μ) :
edist (hf.toL1 f) 0 = ∫⁻ a, edist (f a) 0 ∂μ := by
simp only [toL1, Lp.edist_toLp_zero, eLpNorm, one_ne_zero, eLpNorm', one_toReal, ENNReal.rpow_one,
ne_eq, not_false_eq_true, div_self, ite_false]
simp [edist_eq_coe_nnnorm]
simp only [edist_zero_right, Lp.nnnorm_coe_ennreal, toL1_eq_mk, eLpNorm_aeeqFun]
apply eLpNorm_one_eq_lintegral_nnnorm

variable {𝕜 : Type*} [NormedRing 𝕜] [Module 𝕜 β] [BoundedSMul 𝕜 β]

Expand Down

0 comments on commit e9f0a88

Please sign in to comment.