Skip to content

Commit

Permalink
chore: remove unused tactics (#11351)
Browse files Browse the repository at this point in the history
I removed some of the tactics that were not used and are hopefully uncontroversial arising from the linter at #11308.

As the commit messages should convey, the removed tactics are, essentially,
```
push_cast
norm_cast
congr
norm_num
dsimp
funext
intro
infer_instance
```
  • Loading branch information
adomani committed Mar 13, 2024
1 parent 59f72a9 commit b99084a
Show file tree
Hide file tree
Showing 32 changed files with 12 additions and 45 deletions.
4 changes: 0 additions & 4 deletions Mathlib/Algebra/Category/ModuleCat/Adjunctions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,6 @@ def μ (α β : Type u) : (free R).obj α ⊗ (free R).obj β ≅ (free R).obj (

theorem μ_natural {X Y X' Y' : Type u} (f : X ⟶ Y) (g : X' ⟶ Y') :
((free R).map f ⊗ (free R).map g) ≫ (μ R Y Y').hom = (μ R X X').hom ≫ (free R).map (f ⊗ g) := by
intros
-- Porting note (#11041): broken ext
apply TensorProduct.ext
apply Finsupp.lhom_ext'
Expand All @@ -113,7 +112,6 @@ theorem μ_natural {X Y X' Y' : Type u} (f : X ⟶ Y) (g : X' ⟶ Y') :
theorem left_unitality (X : Type u) :
(λ_ ((free R).obj X)).hom =
(ε R ⊗ 𝟙 ((free R).obj X)) ≫ (μ R (𝟙_ (Type u)) X).hom ≫ map (free R).obj (λ_ X).hom := by
intros
-- Porting note (#11041): broken ext
apply TensorProduct.ext
apply LinearMap.ext_ring
Expand All @@ -134,7 +132,6 @@ theorem left_unitality (X : Type u) :
theorem right_unitality (X : Type u) :
(ρ_ ((free R).obj X)).hom =
(𝟙 ((free R).obj X) ⊗ ε R) ≫ (μ R X (𝟙_ (Type u))).hom ≫ map (free R).obj (ρ_ X).hom := by
intros
-- Porting note (#11041): broken ext
apply TensorProduct.ext
apply Finsupp.lhom_ext'
Expand All @@ -156,7 +153,6 @@ theorem associativity (X Y Z : Type u) :
((μ R X Y).hom ⊗ 𝟙 ((free R).obj Z)) ≫ (μ R (X ⊗ Y) Z).hom ≫ map (free R).obj (α_ X Y Z).hom =
(α_ ((free R).obj X) ((free R).obj Y) ((free R).obj Z)).hom ≫
(𝟙 ((free R).obj X) ⊗ (μ R Y Z).hom) ≫ (μ R X (Y ⊗ Z)).hom := by
intros
-- Porting note (#11041): broken ext
apply TensorProduct.ext
apply TensorProduct.ext
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Algebra/Lie/Classical.lean
Original file line number Diff line number Diff line change
Expand Up @@ -272,7 +272,6 @@ theorem jd_transform [Fintype l] : (PD l R)ᵀ * JD l R * PD l R = (2 : R) • S
have h : (PD l R)ᵀ * JD l R = Matrix.fromBlocks 1 1 1 (-1) := by
simp [PD, JD, Matrix.fromBlocks_transpose, Matrix.fromBlocks_multiply]
rw [h, PD, s_as_blocks, Matrix.fromBlocks_multiply, Matrix.fromBlocks_smul]
congr
simp [two_smul]
#align lie_algebra.orthogonal.JD_transform LieAlgebra.Orthogonal.jd_transform

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/AlgebraicGeometry/AffineScheme.lean
Original file line number Diff line number Diff line change
Expand Up @@ -220,7 +220,7 @@ theorem Scheme.map_PrimeSpectrum_basicOpen_of_affine
change SpecΓIdentity.hom.app (X.presheaf.obj <| op ⊤) = _
rw [← ΓSpec.adjunction_unit_app_app_top X]
rfl
· dsimp; congr
· dsimp
refine' (Scheme.preimage_basicOpen _ _).trans _
congr 1
exact IsIso.inv_hom_id_apply _ _
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Analytic/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1448,7 +1448,6 @@ theorem hasFPowerSeriesAt_iff :
simp only [dist_zero_right] at h
apply FormalMultilinearSeries.le_radius_of_tendsto
convert tendsto_norm.comp (h le_z).summable.tendsto_atTop_zero
funext
simp [norm_smul, mul_comm]
refine' lt_of_lt_of_le _ this
simp only [ENNReal.coe_pos]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Calculus/FormalMultilinearSeries.lean
Original file line number Diff line number Diff line change
Expand Up @@ -300,7 +300,6 @@ theorem mkPiRing_coeff_eq (p : FormalMultilinearSeries 𝕜 𝕜 E) (n : ℕ) :
@[simp]
theorem apply_eq_prod_smul_coeff : p n y = (∏ i, y i) • p.coeff n := by
convert (p n).toMultilinearMap.map_smul_univ y 1
funext
simp only [Pi.one_apply, Algebra.id.smul_eq_mul, mul_one]
#align formal_multilinear_series.apply_eq_prod_smul_coeff FormalMultilinearSeries.apply_eq_prod_smul_coeff

Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Calculus/Taylor.lean
Original file line number Diff line number Diff line change
Expand Up @@ -184,7 +184,6 @@ theorem hasDerivWithinAt_taylorWithinEval {f : ℝ → E} {x y : ℝ} {n : ℕ}
mul_one, zero_add, one_smul]
simp only [iteratedDerivWithin_zero] at hf'
rw [iteratedDerivWithin_one (hs_unique _ (h hy))]
norm_num
exact hf'.hasDerivWithinAt.mono h
simp_rw [Nat.add_succ, taylorWithinEval_succ]
simp only [add_zero, Nat.factorial_succ, Nat.cast_mul, Nat.cast_add, Nat.cast_one]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Convex/Uniform.lean
Original file line number Diff line number Diff line change
Expand Up @@ -120,7 +120,6 @@ theorem exists_forall_closed_ball_dist_add_le_two_mul_sub (hε : 0 < ε) (r :
obtain ⟨δ, hδ, h⟩ := exists_forall_closed_ball_dist_add_le_two_sub E (div_pos hε hr)
refine' ⟨δ * r, mul_pos hδ hr, fun x hx y hy hxy => _⟩
rw [← div_le_one hr, div_eq_inv_mul, ← norm_smul_of_nonneg (inv_nonneg.2 hr.le)] at hx hy
try infer_instance
have := h hx hy
simp_rw [← smul_add, ← smul_sub, norm_smul_of_nonneg (inv_nonneg.2 hr.le), ← div_eq_inv_mul,
div_le_div_right hr, div_le_iff hr, sub_mul] at this
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/Normed/Group/AddCircle.lean
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,6 @@ theorem norm_eq {x : ℝ} : ‖(x : AddCircle p)‖ = |x - round (p⁻¹ * x) *
suffices ∀ x : ℝ, ‖(x : AddCircle (1 : ℝ))‖ = |x - round x| by
rcases eq_or_ne p 0 with (rfl | hp)
· simp
intros
have hx := norm_coe_mul p x p⁻¹
rw [abs_inv, eq_inv_mul_iff_mul_eq₀ ((not_congr abs_eq_zero).mpr hp)] at hx
rw [← hx, inv_mul_cancel hp, this, ← abs_mul, mul_sub, mul_inv_cancel_left₀ hp, mul_comm p]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/NormedSpace/AddTorsor.lean
Original file line number Diff line number Diff line change
Expand Up @@ -212,7 +212,6 @@ theorem nndist_right_midpoint (p₁ p₂ : P) :
theorem dist_midpoint_midpoint_le' (p₁ p₂ p₃ p₄ : P) :
dist (midpoint 𝕜 p₁ p₂) (midpoint 𝕜 p₃ p₄) ≤ (dist p₁ p₃ + dist p₂ p₄) / ‖(2 : 𝕜)‖ := by
rw [dist_eq_norm_vsub V, dist_eq_norm_vsub V, dist_eq_norm_vsub V, midpoint_vsub_midpoint]
try infer_instance
rw [midpoint_eq_smul_add, norm_smul, invOf_eq_inv, norm_inv, ← div_eq_inv_mul]
exact div_le_div_of_nonneg_right (norm_add_le _ _) (norm_nonneg _)
#align dist_midpoint_midpoint_le' dist_midpoint_midpoint_le'
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/SpecialFunctions/CompareExp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ theorem of_isBigO_im_re_rpow (hre : Tendsto re l atTop) (r : ℝ) (hr : im =O[l]
⟨hre, fun n =>
IsLittleO.isBigO <|
calc
(fun z : ℂ => z.im ^ n) =O[l] fun z => (z.re ^ r) ^ n := by norm_cast; exact hr.pow n
(fun z : ℂ => z.im ^ n) =O[l] fun z => (z.re ^ r) ^ n := hr.pow n
_ =ᶠ[l] fun z => z.re ^ (r * n) :=
((hre.eventually_ge_atTop 0).mono fun z hz => by
simp only [Real.rpow_mul hz r n, Real.rpow_nat_cast])
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/SpecialFunctions/Complex/LogBounds.lean
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,6 @@ lemma hasDerivAt_logTaylor (n : ℕ) (z : ℂ) :
lemma hasDerivAt_log_sub_logTaylor (n : ℕ) {z : ℂ} (hz : 1 + z ∈ slitPlane) :
HasDerivAt (fun z : ℂ ↦ log (1 + z) - logTaylor (n + 1) z) ((-z) ^ n * (1 + z)⁻¹) z := by
convert ((hasDerivAt_log hz).comp_const_add 1 z).sub (hasDerivAt_logTaylor n z) using 1
push_cast
have hz' : -z ≠ 1 := by
intro H
rw [neg_eq_iff_eq_neg] at H
Expand Down
4 changes: 0 additions & 4 deletions Mathlib/Analysis/SpecialFunctions/Pow/Asymptotics.lean
Original file line number Diff line number Diff line change
Expand Up @@ -122,16 +122,12 @@ theorem tendsto_rpow_div_mul_add (a b c : ℝ) (hb : 0 ≠ b) :
/-- The function `x ^ (1 / x)` tends to `1` at `+∞`. -/
theorem tendsto_rpow_div : Tendsto (fun x => x ^ ((1 : ℝ) / x)) atTop (𝓝 1) := by
convert tendsto_rpow_div_mul_add (1 : ℝ) _ (0 : ℝ) zero_ne_one
funext
congr 2
ring
#align tendsto_rpow_div tendsto_rpow_div

/-- The function `x ^ (-1 / x)` tends to `1` at `+∞`. -/
theorem tendsto_rpow_neg_div : Tendsto (fun x => x ^ (-(1 : ℝ) / x)) atTop (𝓝 1) := by
convert tendsto_rpow_div_mul_add (-(1 : ℝ)) _ (0 : ℝ) zero_ne_one
funext
congr 2
ring
#align tendsto_rpow_neg_div tendsto_rpow_neg_div

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ theorem cos_eq_zero_iff {θ : ℂ} : cos θ = 0 ↔ ∃ k : ℤ, θ = (2 * k + 1
have h : (exp (θ * I) + exp (-θ * I)) / 2 = 0 ↔ exp (2 * θ * I) = -1 := by
rw [@div_eq_iff _ _ (exp (θ * I) + exp (-θ * I)) 2 0 two_ne_zero, zero_mul,
add_eq_zero_iff_eq_neg, neg_eq_neg_one_mul, ← div_eq_iff (exp_ne_zero _), ← exp_sub]
congr 3; ring_nf
ring_nf
rw [cos, h, ← exp_pi_mul_I, exp_eq_exp_iff_exists_int, mul_right_comm]
refine' exists_congr fun x => _
refine' (iff_of_eq <| congr_arg _ _).trans (mul_right_inj' <| mul_ne_zero two_ne_zero I_ne_zero)
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Analysis/SpecificLimits/Normed.lean
Original file line number Diff line number Diff line change
Expand Up @@ -659,7 +659,6 @@ theorem Antitone.cauchySeq_series_mul_of_tendsto_zero_of_bounded (hfa : Antitone
convert hf0.neg
norm_num
convert (hfa'.cauchySeq_series_mul_of_tendsto_zero_of_bounded hf0' hzb).neg
funext
simp
#align antitone.cauchy_seq_series_mul_of_tendsto_zero_of_bounded Antitone.cauchySeq_series_mul_of_tendsto_zero_of_bounded

Expand Down
3 changes: 1 addition & 2 deletions Mathlib/CategoryTheory/Abelian/Exact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -77,8 +77,7 @@ theorem exact_iff : Exact f g ↔ f ≫ g = 0 ∧ kernel.ι g ≫ cokernel.π f
· refine kernel.lift (cokernel.π f) u ?_ ≫ (imageIsoImage f).hom ≫ (imageSubobjectIso _).inv
rw [← kernel.lift_ι g u hu, Category.assoc, h.2, comp_zero]
· aesop_cat
· intros
rw [← cancel_mono (imageSubobject f).arrow, h]
· rw [← cancel_mono (imageSubobject f).arrow, h]
simp
#align category_theory.abelian.exact_iff CategoryTheory.Abelian.exact_iff

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -126,7 +126,6 @@ lemma le_sum_distinctPairs_edgeDensity_sq (x : {i // i ∈ P.parts.offDiag}) (h
((if G.IsUniform ε x.1.1 x.1.2 then 0 else ε ^ 4 / 3) - ε ^ 5 / 25) ≤
(∑ i in distinctPairs G ε hP x, G.edgeDensity i.1 i.2 ^ 2 : ℝ) / 16 ^ P.parts.card := by
rw [distinctPairs, ← add_sub_assoc, add_sub_right_comm]
push_cast
split_ifs with h
· rw [add_zero]
exact edgeDensity_chunk_uniform hPα hPε _ _
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Geometry/Euclidean/Angle/Oriented/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ theorem oangle_zero_right (x : V) : o.oangle x 0 = 0 := by simp [oangle]
/-- If the two vectors passed to `oangle` are the same, the result is 0. -/
@[simp]
theorem oangle_self (x : V) : o.oangle x x = 0 := by
rw [oangle, kahler_apply_self, ← ofReal_pow]; norm_cast
rw [oangle, kahler_apply_self, ← ofReal_pow]
convert QuotientAddGroup.mk_zero (AddSubgroup.zmultiples (2 * π))
apply arg_ofReal_of_nonneg
positivity
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Geometry/RingedSpace/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -218,7 +218,6 @@ theorem basicOpen_mul {U : Opens X} (f g : X.presheaf.obj (op U)) :
ext1
dsimp [RingedSpace.basicOpen]
rw [← Set.image_inter Subtype.coe_injective]
congr
ext x
simp [map_mul, Set.mem_image]
set_option linter.uppercaseLean3 false in
Expand Down
1 change: 0 additions & 1 deletion Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
Original file line number Diff line number Diff line change
Expand Up @@ -187,7 +187,6 @@ theorem affineIndependent_iff_finrank_vectorSpan_eq [Fintype ι] (p : ι → P)
rw [affineIndependent_iff_linearIndependent_vsub _ _ i₁,
linearIndependent_iff_card_eq_finrank_span, eq_comm,
vectorSpan_range_eq_span_range_vsub_right_ne k p i₁, Set.finrank]
congr
rw [← Finset.card_univ] at hc
rw [Fintype.subtype_card]
simp [Finset.filter_ne', Finset.card_erase_of_mem, hc]
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/MeasureTheory/Function/UniformIntegrable.lean
Original file line number Diff line number Diff line change
Expand Up @@ -664,8 +664,7 @@ theorem unifIntegrable_of' (hp : 1 ≤ p) (hp' : p ≠ ∞) {f : ι → α →
change _ = fun x => (s ∩ { x : α | C ≤ ‖f i x‖₊ }).indicator (f i) x +
(s ∩ { x : α | ‖f i x‖₊ < C }).indicator (f i) x
rw [← Set.indicator_union_of_disjoint]
· congr
rw [← Set.inter_union_distrib_left, (by ext; simp [le_or_lt] :
· rw [← Set.inter_union_distrib_left, (by ext; simp [le_or_lt] :
{ x : α | C ≤ ‖f i x‖₊ } ∪ { x : α | ‖f i x‖₊ < C } = Set.univ),
Set.inter_univ]
· refine' (Disjoint.inf_right' _ _).inf_left' _
Expand Down
1 change: 0 additions & 1 deletion Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
Original file line number Diff line number Diff line change
Expand Up @@ -464,7 +464,6 @@ theorem AECover.integrable_of_integral_norm_bounded [l.NeBot] [l.IsCountablyGene
rw [integral_eq_lintegral_of_nonneg_ae (ae_of_all _ fun x => @norm_nonneg E _ (f x))
hfm.norm.restrict]
conv at hbounded in ENNReal.ofReal _ =>
dsimp
rw [← coe_nnnorm]
rw [ENNReal.ofReal_coe_nnreal]
refine' hbounded.mono fun i hi => _
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/NumberTheory/LegendreSymbol/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -127,8 +127,6 @@ theorem eq_pow (a : ℤ) : (legendreSym p a : ZMod p) = (a : ZMod p) ^ (p / 2) :
· tauto
· simp
· convert quadraticChar_eq_pow_of_char_ne_two' hc (a : ZMod p)
norm_cast
congr
exact (card p).symm
#align legendre_sym.eq_pow legendreSym.eq_pow

Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Probability/Independence/Conditional.lean
Original file line number Diff line number Diff line change
Expand Up @@ -231,8 +231,7 @@ lemma iCondIndepSets_singleton_iff (s : ι → Set Ω) (hπ : ∀ i, MeasurableS
apply congr_arg₂
· exact Set.iInter₂_congr hf
· rfl
· congr
simp_rw [Finset.prod_apply]
· simp_rw [Finset.prod_apply]
refine Finset.prod_congr rfl (fun i hi ↦ ?_)
rw [hf i hi]
· simpa only [Set.mem_singleton_iff, forall_eq]
Expand Down
1 change: 0 additions & 1 deletion Mathlib/RingTheory/FinitePresentation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -238,7 +238,6 @@ theorem of_restrict_scalars_finitePresentation [Algebra A B] [IsScalarTower R A
rw [adjoin_union_eq_adjoin_adjoin, ← Subalgebra.restrictScalars_top R (A := AX)
(S := { x // x ∈ adjoin R ((algebraMap A AX) '' t) })]
refine congrArg (Subalgebra.restrictScalars R) ?_
congr 1
rw [adjoin_algebraMap, ht]
apply Subalgebra.restrictScalars_injective R
rw [← adjoin_restrictScalars, adjoin_range_X, Subalgebra.restrictScalars_top,
Expand Down
1 change: 0 additions & 1 deletion Mathlib/RingTheory/Ideal/MinimalPrime.lean
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,6 @@ theorem Ideal.exists_minimalPrimes_le [J.IsPrime] (e : I ≤ J) : ∃ p ∈ I.mi
@[simp]
theorem Ideal.radical_minimalPrimes : I.radical.minimalPrimes = I.minimalPrimes := by
rw [Ideal.minimalPrimes, Ideal.minimalPrimes]
congr
ext p
refine' ⟨_, _⟩ <;> rintro ⟨⟨a, ha⟩, b⟩
· refine' ⟨⟨a, a.radical_le_iff.1 ha⟩, _⟩
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Polynomial/Cyclotomic/Eval.lean
Original file line number Diff line number Diff line change
Expand Up @@ -119,7 +119,7 @@ theorem cyclotomic_pos_and_nonneg (n : ℕ) {R} [LinearOrderedCommRing R] (x : R
simp [cyclotomic_zero, cyclotomic_one, cyclotomic_two, succ_eq_add_one, eval_X, eval_one,
eval_add, eval_sub, sub_nonneg, sub_pos, zero_lt_one, zero_le_one, imp_true_iff, imp_self,
and_self_iff]
· constructor <;> intro <;> set_option tactic.skipAssignedInstances false in norm_num; linarith
· constructor <;> intro <;> linarith
· have : 2 < n + 3 := by linarith
constructor <;> intro <;> [skip; apply le_of_lt] <;> apply cyclotomic_pos this
#align polynomial.cyclotomic_pos_and_nonneg Polynomial.cyclotomic_pos_and_nonneg
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/RingTheory/RingHom/Finite.lean
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,9 @@ theorem finite_stableUnderBaseChange : StableUnderBaseChange @Finite := by
classical
introv h
replace h : Module.Finite R T := by
rw [RingHom.Finite] at h; convert h; ext; intros; simp_rw [Algebra.smul_def]; rfl
rw [RingHom.Finite] at h; convert h; ext; simp_rw [Algebra.smul_def]; rfl
suffices Module.Finite S (S ⊗[R] T) by
rw [RingHom.Finite]; convert this; congr; ext; intros; simp_rw [Algebra.smul_def]; rfl
rw [RingHom.Finite]; convert this; congr; ext; simp_rw [Algebra.smul_def]; rfl
exact inferInstance
#align ring_hom.finite_stable_under_base_change RingHom.finite_stableUnderBaseChange

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/RingTheory/UniqueFactorizationDomain.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1975,8 +1975,8 @@ noncomputable def UniqueFactorizationMonoid.toNormalizedGCDMonoid (α : Type*)
gcd_mul_lcm := fun a b => by
rw [← out_mul, mul_comm, sup_mul_inf, mk_mul_mk, out_mk]
exact normalize_associated (a * b)
normalize_gcd := fun a b => by congr; apply normalize_out _
normalize_lcm := fun a b => by congr; apply normalize_out _ }
normalize_gcd := fun a b => by apply normalize_out _
normalize_lcm := fun a b => by apply normalize_out _ }
#align unique_factorization_monoid.to_normalized_gcd_monoid UniqueFactorizationMonoid.toNormalizedGCDMonoid

instance (α) [CancelCommMonoidWithZero α] [UniqueFactorizationMonoid α] :
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Topology/Category/Stonean/Limits.lean
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,6 @@ lemma pullback.lift_fst {W : Stonean} (a : W ⟶ X) (b : W ⟶ Y) (w : a ≫ f =
lemma pullback.lift_snd {X Y Z W : Stonean} (f : X ⟶ Z) {i : Y ⟶ Z} (hi : OpenEmbedding i)
(a : W ⟶ X) (b : W ⟶ Y) (w : a ≫ f = b ≫ i) :
pullback.lift f hi a b w ≫ Stonean.pullback.snd f hi = b := by
congr
ext z
have := congr_fun (DFunLike.ext'_iff.mp w.symm) z
have h : i (b z) = f (a z) := this
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/Topology/Category/TopCat/Limits/Pullbacks.lean
Original file line number Diff line number Diff line change
Expand Up @@ -335,7 +335,6 @@ theorem embedding_of_pullback_embeddings {X Y S : TopCat} {f : X ⟶ S} {g : Y
(H₂ : Embedding g) : Embedding (limit.π (cospan f g) WalkingCospan.one) := by
convert H₂.comp (snd_embedding_of_left_embedding H₁ g)
erw [← coe_comp]
congr
rw [← limit.w _ WalkingCospan.Hom.inr]
rfl
#align Top.embedding_of_pullback_embeddings TopCat.embedding_of_pullback_embeddings
Expand Down Expand Up @@ -364,7 +363,6 @@ theorem openEmbedding_of_pullback_open_embeddings {X Y S : TopCat} {f : X ⟶ S}
OpenEmbedding (limit.π (cospan f g) WalkingCospan.one) := by
convert H₂.comp (snd_openEmbedding_of_left_openEmbedding H₁ g)
erw [← coe_comp]
congr
rw [← limit.w _ WalkingCospan.Hom.inr]
rfl
#align Top.open_embedding_of_pullback_open_embeddings TopCat.openEmbedding_of_pullback_open_embeddings
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Topology/MetricSpace/GromovHausdorff.lean
Original file line number Diff line number Diff line change
Expand Up @@ -438,7 +438,6 @@ instance : MetricSpace GHSpace where
hausdorffDist (p.1 : Set ℓ_infty_ℝ) p.2) ∘
Prod.swap ''
{ a | ⟦a⟧ = x } ×ˢ { b | ⟦b⟧ = y } := by
congr
funext
simp only [comp_apply, Prod.fst_swap, Prod.snd_swap]
congr
Expand Down
1 change: 0 additions & 1 deletion Mathlib/Topology/MetricSpace/Holder.lean
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,6 @@ namespace HolderWith

theorem nndist_le_of_le (hf : HolderWith C r f) {x y : X} {d : ℝ≥0} (hd : nndist x y ≤ d) :
nndist (f x) (f y) ≤ C * d ^ (r : ℝ) := by
norm_cast
rw [← ENNReal.coe_le_coe, ← edist_nndist, ENNReal.coe_mul, ←
ENNReal.coe_rpow_of_nonneg _ r.coe_nonneg]
apply hf.edist_le_of_le
Expand Down

0 comments on commit b99084a

Please sign in to comment.