Skip to content

Commit

Permalink
feat: backport changes from lean-pr-testing-4096 (#12772)
Browse files Browse the repository at this point in the history
These changes will be required after leanprover/lean4#4096, but they all look like positive readability changes to me anyway (the things being filled in are sort of hard to work out with time travelling to later lines in the proofs!), so I think we can backport them all to `master`.

Co-authored-by: Scott Morrison <[email protected]>
  • Loading branch information
kim-em and kim-em committed May 9, 2024
1 parent 47d4fa9 commit b72ddd8
Show file tree
Hide file tree
Showing 11 changed files with 12 additions and 12 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Order/CauSeq/Completion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -236,7 +236,7 @@ theorem inv_mk {f} (hf) : (@mk α _ β _ abv _ f)⁻¹ = mk (inv f hf) :=
#align cau_seq.completion.inv_mk CauSeq.Completion.inv_mk

theorem cau_seq_zero_ne_one : ¬(0 : CauSeq _ abv) ≈ 1 := fun h =>
have : LimZero (1 - 0) := Setoid.symm h
have : LimZero (1 - 0 : CauSeq _ abv) := Setoid.symm h
have : LimZero 1 := by simpa
by apply one_ne_zero <| const_limZero.1 this
#align cau_seq.completion.cau_seq_zero_ne_one CauSeq.Completion.cau_seq_zero_ne_one
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Analysis/NormedSpace/OperatorNorm/Prod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ variable (𝕜 E F)
‖fst 𝕜 E F‖ = 1 := by
refine le_antisymm (norm_fst_le ..) ?_
let ⟨e, he⟩ := exists_ne (0 : E)
have : ‖e‖ ≤ _ * max ‖e‖ ‖0‖ := (fst 𝕜 E F).le_opNorm (e, 0)
have : ‖e‖ ≤ _ * max ‖e‖ ‖(0 : F)‖ := (fst 𝕜 E F).le_opNorm (e, 0)
rw [norm_zero, max_eq_left (norm_nonneg e)] at this
rwa [← mul_le_mul_iff_of_pos_right (norm_pos_iff.mpr he), one_mul]

Expand All @@ -170,7 +170,7 @@ variable (𝕜 E F)
‖snd 𝕜 E F‖ = 1 := by
refine le_antisymm (norm_snd_le ..) ?_
let ⟨f, hf⟩ := exists_ne (0 : F)
have : ‖f‖ ≤ _ * max ‖0‖ ‖f‖ := (snd 𝕜 E F).le_opNorm (0, f)
have : ‖f‖ ≤ _ * max ‖(0 : E)‖ ‖f‖ := (snd 𝕜 E F).le_opNorm (0, f)
rw [norm_zero, max_eq_right (norm_nonneg f)] at this
rwa [← mul_le_mul_iff_of_pos_right (norm_pos_iff.mpr hf), one_mul]

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/SpecialFunctions/ImproperIntegrals.lean
Original file line number Diff line number Diff line change
Expand Up @@ -96,7 +96,7 @@ theorem not_integrableOn_Ioi_rpow (s : ℝ) : ¬ IntegrableOn (fun x ↦ x ^ s)
· have : IntegrableOn (fun x ↦ x ^ s) (Ioo (0 : ℝ) 1) := h.mono Ioo_subset_Ioi_self le_rfl
rw [integrableOn_Ioo_rpow_iff zero_lt_one] at this
exact hs.not_lt this
· have : IntegrableOn (fun x ↦ x ^ s) (Ioi 1) := h.mono (Ioi_subset_Ioi zero_le_one) le_rfl
· have : IntegrableOn (fun x ↦ x ^ s) (Ioi (1 : ℝ)) := h.mono (Ioi_subset_Ioi zero_le_one) le_rfl
rw [integrableOn_Ioi_rpow_iff zero_lt_one] at this
exact hs.not_lt this

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Computability/AkraBazzi/AkraBazzi.lean
Original file line number Diff line number Diff line change
Expand Up @@ -520,7 +520,7 @@ lemma tendsto_zero_sumCoeffsExp : Tendsto (fun (p : ℝ) => ∑ i, a i * (b i) ^
linarith

lemma tendsto_atTop_sumCoeffsExp : Tendsto (fun (p : ℝ) => ∑ i, a i * (b i) ^ p) atBot atTop := by
have h₁ : Tendsto (fun p => (a (max_bi b) : ℝ) * b (max_bi b) ^ p) atBot atTop :=
have h₁ : Tendsto (fun p : ℝ => (a (max_bi b) : ℝ) * b (max_bi b) ^ p) atBot atTop :=
Tendsto.mul_atTop (R.a_pos (max_bi b)) (by simp)
<| tendsto_rpow_atBot_of_base_lt_one _
(by have := R.b_pos (max_bi b); linarith) (R.b_lt_one _)
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/GroupTheory/Coset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -148,7 +148,7 @@ variable [Monoid α] (s : Submonoid α)

@[to_additive mem_own_leftAddCoset]
theorem mem_own_leftCoset (a : α) : a ∈ a • (s : Set α) :=
suffices a * 1 ∈ a • ↑s by simpa
suffices a * 1 ∈ a • (s : Set α) by simpa
mem_leftCoset a (one_mem s : 1 ∈ s)
#align mem_own_left_coset mem_own_leftCoset
#align mem_own_left_add_coset mem_own_leftAddCoset
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/LinearAlgebra/Matrix/NonsingularInverse.lean
Original file line number Diff line number Diff line change
Expand Up @@ -118,7 +118,7 @@ def invertibleEquivDetInvertible : Invertible A ≃ Invertible A.det where
variable {A B}

theorem mul_eq_one_comm : A * B = 1 ↔ B * A = 1 :=
suffices ∀ A B, A * B = 1 → B * A = 1 from ⟨this A B, this B A⟩
suffices ∀ A B : Matrix n n α, A * B = 1 → B * A = 1 from ⟨this A B, this B A⟩
fun A B h => by
letI : Invertible B.det := detInvertibleOfLeftInverse _ _ h
letI : Invertible B := invertibleOfDetInvertible B
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/MeasureTheory/Measure/Haar/Unique.lean
Original file line number Diff line number Diff line change
Expand Up @@ -492,7 +492,7 @@ lemma measure_preimage_isMulLeftInvariant_eq_smul_of_hasCompactSupport
· simpa using (u_mem n).2.le
have I1 := I μ' (by infer_instance)
simp_rw [M] at I1
have J1 : ∫ (x : G), indicator {1} (fun _ ↦ 1) (f x) ∂μ'
have J1 : ∫ (x : G), indicator {1} (fun _ ↦ (1 : ℝ)) (f x) ∂μ'
= ∫ (x : G), indicator {1} (fun _ ↦ 1) (f x) ∂(haarScalarFactor μ' μ • μ) :=
tendsto_nhds_unique I1 (I (haarScalarFactor μ' μ • μ) (by infer_instance))
have J2 : ENNReal.toReal (μ' (f ⁻¹' {1}))
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/NumberTheory/Zsqrtd/QuadraticReciprocity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ theorem prime_of_nat_prime_of_mod_four_eq_three (p : ℕ) [hp : Fact p.Prime] (h
irreducible_iff_prime.1 <|
by_contradiction fun hpi =>
let ⟨a, b, hab⟩ := sq_add_sq_of_nat_prime_of_not_irreducible p hpi
have : ∀ a b : ZMod 4, a ^ 2 + b ^ 2↑p := by
have : ∀ a b : ZMod 4, a ^ 2 + b ^ 2(p : ZMod 4) := by
erw [← ZMod.natCast_mod p 4, hp3]; decide
this a b (hab ▸ by simp)
#align gaussian_int.prime_of_nat_prime_of_mod_four_eq_three GaussianInt.prime_of_nat_prime_of_mod_four_eq_three
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Order/PrimeIdeal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -158,7 +158,7 @@ instance (priority := 100) IsMaximal.isPrime [IsMaximal I] : IsPrime I := by
let J := I ⊔ principal x
have hJuniv : (J : Set P) = Set.univ :=
IsMaximal.maximal_proper (lt_sup_principal_of_not_mem ‹_›)
have hyJ : y ∈ ↑J := Set.eq_univ_iff_forall.mp hJuniv y
have hyJ : y ∈ (J : Set P) := Set.eq_univ_iff_forall.mp hJuniv y
rw [coe_sup_eq] at hyJ
rcases hyJ with ⟨a, ha, b, hb, hy⟩
rw [hy]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/RingTheory/Polynomial/Eisenstein/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@ theorem dvd_pow_natDegree_of_eval₂_eq_zero {f : R →+* A} (hf : Function.Inje
(Ideal.mem_span_singleton.mpr <| dvd_refl x)).pow_natDegree_le_of_root_of_monic_mem
_ ((monic_scaleRoots_iff x).mpr hp) _ le_rfl
rw [injective_iff_map_eq_zero'] at hf
have : eval₂ _ _ (p.scaleRoots x) = 0 := scaleRoots_eval₂_eq_zero f h
have : eval₂ f _ (p.scaleRoots x) = 0 := scaleRoots_eval₂_eq_zero f h
rwa [hz, Polynomial.eval₂_at_apply, hf] at this
#align polynomial.dvd_pow_nat_degree_of_eval₂_eq_zero Polynomial.dvd_pow_natDegree_of_eval₂_eq_zero

Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Topology/ContinuousFunction/Bounded.lean
Original file line number Diff line number Diff line change
Expand Up @@ -581,7 +581,7 @@ theorem arzela_ascoli₂ (s : Set β) (hs : IsCompact s) (A : Set (α →ᵇ β)
IsCompact A := by
/- This version is deduced from the previous one by restricting to the compact type in the target,
using compactness there and then lifting everything to the original space. -/
have M : LipschitzWith 1 (↑) := LipschitzWith.subtype_val s
have M : LipschitzWith 1 Subtype.val := LipschitzWith.subtype_val s
let F : (α →ᵇ s) → α →ᵇ β := comp (↑) M
refine' IsCompact.of_isClosed_subset ((_ : IsCompact (F ⁻¹' A)).image (continuous_comp M)) closed
fun f hf => _
Expand Down

0 comments on commit b72ddd8

Please sign in to comment.