Skip to content

Commit

Permalink
Fixes from the erw linter
Browse files Browse the repository at this point in the history
  • Loading branch information
Vierkantor committed Oct 18, 2024
1 parent 109e158 commit af3c28c
Show file tree
Hide file tree
Showing 5 changed files with 8 additions and 8 deletions.
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Limits/Shapes/Reflexive.lean
Original file line number Diff line number Diff line change
Expand Up @@ -514,7 +514,7 @@ lemma mk_π {X : C} (π : F.obj zero ⟶ X) (h : F.map left ≫ π = F.map right
(mk π h).π = π := rfl

lemma condition (G : ReflexiveCofork F) : F.map left ≫ G.π = F.map right ≫ G.π := by
erw [Cocone.w G left, Cocone.w G right]
rw [Cocone.w G left, Cocone.w G right]

@[simp]
lemma app_one_eq_π (G : ReflexiveCofork F) : G.ι.app zero = G.π := rfl
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/CategoryTheory/Shift/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -519,7 +519,7 @@ lemma shiftFunctorCompIsoId_add'_inv_app :
dsimp [shiftFunctorCompIsoId]
simp only [Functor.map_comp, Category.assoc]
congr 1
erw [← NatTrans.naturality]
rw [← NatTrans.naturality]
dsimp
rw [← cancel_mono ((shiftFunctorAdd' C p' p 0 hp).inv.app X), Iso.hom_inv_id_app,
Category.assoc, Category.assoc, Category.assoc, Category.assoc,
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Condensed/Discrete/Colimit.lean
Original file line number Diff line number Diff line change
Expand Up @@ -276,7 +276,7 @@ lemma isoLocallyConstantOfIsColimit_inv (X : Profinite.{u}ᵒᵖ ⥤ Type (u+1))
simp only [types_comp_apply, isoFinYoneda_inv_app, counitApp_app]
apply presheaf_ext.{u, u+1} (X := X) (Y := X) (f := f)
intro x
erw [incl_of_counitAppApp]
rw [incl_of_counitAppApp]
simp only [counitAppAppImage, CompHausLike.coe_of]
letI : Fintype (fiber.{u, u+1} f x) :=
Fintype.ofInjective (sigmaIncl.{u, u+1} f x).1 Subtype.val_injective
Expand Down Expand Up @@ -551,7 +551,7 @@ lemma isoLocallyConstantOfIsColimit_inv (X : LightProfinite.{u}ᵒᵖ ⥤ Type u
simp only [types_comp_apply, isoFinYoneda_inv_app, counitApp_app]
apply presheaf_ext.{u, u} (X := X) (Y := X) (f := f)
intro x
erw [incl_of_counitAppApp]
rw [incl_of_counitAppApp]
simp only [counitAppAppImage, CompHausLike.coe_of]
letI : Fintype (fiber.{u, u} f x) :=
Fintype.ofInjective (sigmaIncl.{u, u} f x).1 Subtype.val_injective
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Geometry/RingedSpace/OpenImmersion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1120,8 +1120,8 @@ theorem lift_range (H' : Set.range g.base ⊆ Set.range f.base) :
have : _ = (pullback.fst f g).base :=
PreservesPullback.iso_hom_fst
(LocallyRingedSpace.forgetToSheafedSpace ⋙ SheafedSpace.forget _) f g
rw [LocallyRingedSpace.comp_base, ← this, ← Category.assoc, coe_comp]
rw [Set.range_comp, Set.range_iff_surjective.mpr, Set.image_univ]
rw [LocallyRingedSpace.comp_base, ← this, ← Category.assoc, coe_comp, Set.range_comp,
Set.range_iff_surjective.mpr, Set.image_univ]
-- Porting note (#11224): change `rw` to `erw` on this lemma
· erw [TopCat.pullback_fst_range]
ext
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Topology/Order/ScottTopology.lean
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,7 @@ variable {α D}

lemma isOpen_iff [IsScottHausdorff α D] :
IsOpen s ↔ ∀ ⦃d : Set α⦄, d ∈ D → d.Nonempty → DirectedOn (· ≤ ·) d → ∀ ⦃a : α⦄, IsLUB d a →
a ∈ s → ∃ b ∈ d, Ici b ∩ d ⊆ s := by erw [topology_eq_scottHausdorff (α := α) (D := D)]; rfl
a ∈ s → ∃ b ∈ d, Ici b ∩ d ⊆ s := by rw [topology_eq_scottHausdorff (α := α) (D := D)]; rfl

lemma dirSupInaccOn_of_isOpen [IsScottHausdorff α D] (h : IsOpen s) : DirSupInaccOn D s :=
fun d hd₀ hd₁ hd₂ a hda hd₃ ↦ by
Expand Down Expand Up @@ -241,7 +241,7 @@ lemma topology_eq [IsScott α D] : ‹_› = scott α D := topology_eq_scott
variable {α} {D} {s : Set α} {a : α}

lemma isOpen_iff_isUpperSet_and_scottHausdorff_open [IsScott α D] :
IsOpen s ↔ IsUpperSet s ∧ IsOpen[scottHausdorff α D] s := by erw [topology_eq α D]; rfl
IsOpen s ↔ IsUpperSet s ∧ IsOpen[scottHausdorff α D] s := by rw [topology_eq α D]; rfl

lemma isOpen_iff_isUpperSet_and_dirSupInaccOn [IsScott α D] :
IsOpen s ↔ IsUpperSet s ∧ DirSupInaccOn D s := by
Expand Down

0 comments on commit af3c28c

Please sign in to comment.