Skip to content

Commit

Permalink
chore: adapt to multiple goal linter 1 (#12338)
Browse files Browse the repository at this point in the history
  • Loading branch information
adomani authored and apnelson1 committed May 12, 2024
1 parent 62dd6a3 commit 83abaca
Show file tree
Hide file tree
Showing 199 changed files with 912 additions and 768 deletions.
4 changes: 2 additions & 2 deletions Archive/Imo/Imo1972Q5.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,8 +53,8 @@ theorem imo1972_q5 (f g : ℝ → ℝ) (hf1 : ∀ x, ∀ y, f (x + y) + f (x - y
0 < ‖f x‖ := norm_pos_iff.mpr hx
_ ≤ k := hk₁ x
rw [div_lt_iff]
apply lt_mul_of_one_lt_right h₁ hneg
exact zero_lt_one.trans hneg
· apply lt_mul_of_one_lt_right h₁ hneg
· exact zero_lt_one.trans hneg
-- Demonstrate that `k ≤ k'` using `hk₂`.
have H₂ : k ≤ k' := by
have h₁ : ∃ x : ℝ, x ∈ S := by use ‖f 0‖; exact Set.mem_range_self 0
Expand Down
6 changes: 3 additions & 3 deletions Archive/Imo/Imo2008Q2.lean
Original file line number Diff line number Diff line change
Expand Up @@ -103,9 +103,9 @@ theorem imo2008_q2b : Set.Infinite rationalSolutions := by
set z : ℚ := -t * (t + 1) with hz_def
simp only [t, W, K, g, Set.mem_image, Prod.exists]
use x, y, z; constructor
simp only [Set.mem_setOf_eq]
· use x, y, z; constructor
rfl
· simp only [Set.mem_setOf_eq]
use x, y, z; constructor
· rfl
· use t; constructor
· simp only [t, gt_iff_lt, lt_max_iff]; right; trivial
exact ⟨rfl, rfl, rfl⟩
Expand Down
31 changes: 16 additions & 15 deletions Archive/Wiedijk100Theorems/AbelRuffini.lean
Original file line number Diff line number Diff line change
Expand Up @@ -85,21 +85,22 @@ theorem monic_Phi : (Φ R a b).Monic :=
theorem irreducible_Phi (p : ℕ) (hp : p.Prime) (hpa : p ∣ a) (hpb : p ∣ b) (hp2b : ¬p ^ 2 ∣ b) :
Irreducible (Φ ℚ a b) := by
rw [← map_Phi a b (Int.castRingHom ℚ), ← IsPrimitive.Int.irreducible_iff_irreducible_map_cast]
apply irreducible_of_eisenstein_criterion
· rwa [span_singleton_prime (Int.natCast_ne_zero.mpr hp.ne_zero), Int.prime_iff_natAbs_prime]
· rw [leadingCoeff_Phi, mem_span_singleton]
exact mod_cast mt Nat.dvd_one.mp hp.ne_one
· intro n hn
rw [mem_span_singleton]
rw [degree_Phi] at hn; norm_cast at hn
interval_cases hn : n <;>
simp (config := {decide := true}) only [Φ, coeff_X_pow, coeff_C, Int.natCast_dvd_natCast.mpr,
hpb, if_true, coeff_C_mul, if_false, coeff_X_zero, hpa, coeff_add, zero_add, mul_zero,
coeff_sub, add_zero, zero_sub, dvd_neg, neg_zero, dvd_mul_of_dvd_left]
· simp only [degree_Phi, ← WithBot.coe_zero, WithBot.coe_lt_coe, Nat.succ_pos']
decide
· rw [coeff_zero_Phi, span_singleton_pow, mem_span_singleton]
exact mt Int.natCast_dvd_natCast.mp hp2b
on_goal 1 =>
apply irreducible_of_eisenstein_criterion
· rwa [span_singleton_prime (Int.natCast_ne_zero.mpr hp.ne_zero), Int.prime_iff_natAbs_prime]
· rw [leadingCoeff_Phi, mem_span_singleton]
exact mod_cast mt Nat.dvd_one.mp hp.ne_one
· intro n hn
rw [mem_span_singleton]
rw [degree_Phi] at hn; norm_cast at hn
interval_cases hn : n <;>
simp (config := {decide := true}) only [Φ, coeff_X_pow, coeff_C, Int.natCast_dvd_natCast.mpr,
hpb, if_true, coeff_C_mul, if_false, coeff_X_zero, hpa, coeff_add, zero_add, mul_zero,
coeff_sub, add_zero, zero_sub, dvd_neg, neg_zero, dvd_mul_of_dvd_left]
· simp only [degree_Phi, ← WithBot.coe_zero, WithBot.coe_lt_coe, Nat.succ_pos']
decide
· rw [coeff_zero_Phi, span_singleton_pow, mem_span_singleton]
exact mt Int.natCast_dvd_natCast.mp hp2b
all_goals exact Monic.isPrimitive (monic_Phi a b)
#align abel_ruffini.irreducible_Phi AbelRuffini.irreducible_Phi

Expand Down
4 changes: 2 additions & 2 deletions Archive/Wiedijk100Theorems/BallotProblem.lean
Original file line number Diff line number Diff line change
Expand Up @@ -387,8 +387,8 @@ theorem ballot_problem' :
ring
all_goals
refine' (ENNReal.mul_lt_top _ _).ne
exact (measure_lt_top _ _).ne
simp [Ne, ENNReal.div_eq_top]
· exact (measure_lt_top _ _).ne
· simp [Ne, ENNReal.div_eq_top]
#align ballot.ballot_problem' Ballot.ballot_problem'

/-- The ballot problem. -/
Expand Down
60 changes: 38 additions & 22 deletions Archive/Wiedijk100Theorems/CubingACube.lean
Original file line number Diff line number Diff line change
Expand Up @@ -182,8 +182,8 @@ theorem zero_le_b {i j} : 0 ≤ (cs i).b j :=
theorem b_add_w_le_one {j} : (cs i).b j + (cs i).w ≤ 1 := by
have : side (cs i) j ⊆ Ico 0 1 := side_subset h
rw [side, Ico_subset_Ico_iff] at this
convert this.2
simp [hw]
· convert this.2
· simp [hw]
#align theorems_100.«82».correct.b_add_w_le_one Theorems100.«82».Correct.b_add_w_le_one

theorem nontrivial_fin : Nontrivial (Fin n) :=
Expand All @@ -199,9 +199,12 @@ theorem w_ne_one [Nontrivial ι] (i : ι) : (cs i).w ≠ 1 := by
have h2p : p ∈ (cs i).toSet := by
intro j; constructor
trans (0 : ℝ)
· rw [← add_le_add_iff_right (1 : ℝ)]; convert b_add_w_le_one h; rw [hi]; rw [zero_add]
apply zero_le_b h; apply lt_of_lt_of_le (side_subset h <| (cs i').b_mem_side j).2
simp [hi, zero_le_b h]
· rw [← add_le_add_iff_right (1 : ℝ)]; convert b_add_w_le_one h
· rw [hi]
· rw [zero_add]
· apply zero_le_b h
· apply lt_of_lt_of_le (side_subset h <| (cs i').b_mem_side j).2
simp [hi, zero_le_b h]
exact (h.PairwiseDisjoint hi').le_bot ⟨hp, h2p⟩
#align theorems_100.«82».correct.w_ne_one Theorems100.«82».Correct.w_ne_one

Expand All @@ -213,7 +216,9 @@ theorem shiftUp_bottom_subset_bottoms (hc : (cs i).xm ≠ 1) :
have : p ∈ (unitCube : Cube (n + 1)).toSet := by
simp only [toSet, forall_fin_succ, hp0, side_unitCube, mem_setOf_eq, mem_Ico, head_shiftUp]
refine' ⟨⟨_, _⟩, _⟩
· rw [← zero_add (0 : ℝ)]; apply add_le_add; apply zero_le_b h; apply (cs i).hw'
· rw [← zero_add (0 : ℝ)]; apply add_le_add
· apply zero_le_b h
· apply (cs i).hw'
· exact lt_of_le_of_ne (b_add_w_le_one h) hc
intro j; exact side_subset h (hps j)
rw [← h.2, mem_iUnion] at this; rcases this with ⟨i', hi'⟩
Expand All @@ -222,9 +227,9 @@ theorem shiftUp_bottom_subset_bottoms (hc : (cs i).xm ≠ 1) :
have := h.1 this
rw [onFun, comp_apply, comp_apply, toSet_disjoint, exists_fin_succ] at this
rcases this with (h0 | ⟨j, hj⟩)
rw [hp0]; symm; apply eq_of_Ico_disjoint h0 (by simp [hw]) _
convert hi' 0; rw [hp0]; rfl
exfalso; apply not_disjoint_iff.mpr ⟨tail p j, hps j, hi' j.succ⟩ hj
· rw [hp0]; symm; apply eq_of_Ico_disjoint h0 (by simp [hw]) _
convert hi' 0; rw [hp0]; rfl
· exfalso; apply not_disjoint_iff.mpr ⟨tail p j, hps j, hi' j.succ⟩ hj
#align theorems_100.«82».correct.shift_up_bottom_subset_bottoms Theorems100.«82».Correct.shiftUp_bottom_subset_bottoms

end Correct
Expand Down Expand Up @@ -255,11 +260,15 @@ theorem valley_unitCube [Nontrivial ι] (h : Correct cs) : Valley cs unitCube :=
intro h0 hv
have : v ∈ (unitCube : Cube (n + 1)).toSet := by
dsimp only [toSet, unitCube, mem_setOf_eq]
rw [forall_fin_succ, h0]; constructor; norm_num [side, unitCube]; exact hv
rw [forall_fin_succ, h0]; constructor
· norm_num [side, unitCube]
· exact hv
rw [← h.2, mem_iUnion] at this; rcases this with ⟨i, hi⟩
use i
constructor
· apply le_antisymm; rw [h0]; exact h.zero_le_b; exact (hi 0).1
· apply le_antisymm
· rw [h0]; exact h.zero_le_b
· exact (hi 0).1
intro j; exact hi _
· intro i _ _; rw [toSet_subset]; intro j; convert h.side_subset using 1; simp [side_tail]
· intro i _; exact h.w_ne_one i
Expand Down Expand Up @@ -290,7 +299,8 @@ theorem b_le_b (hi : i ∈ bcubes cs c) (j : Fin n) : c.b j.succ ≤ (cs i).b j.
theorem t_le_t (hi : i ∈ bcubes cs c) (j : Fin n) :
(cs i).b j.succ + (cs i).w ≤ c.b j.succ + c.w := by
have h' := tail_sub hi j; dsimp only [side] at h'; rw [Ico_subset_Ico_iff] at h'
exact h'.2; simp [hw]
· exact h'.2
· simp [hw]
#align theorems_100.«82».t_le_t Theorems100.«82».t_le_t

/-- Every cube in the valley must be smaller than it -/
Expand Down Expand Up @@ -362,9 +372,11 @@ theorem mi_strict_minimal (hii' : mi h v ≠ i) (hi : i ∈ bcubes cs c) :
/-- The top of `mi` cannot be 1, since there is a larger cube in the valley -/
theorem mi_xm_ne_one : (cs <| mi h v).xm ≠ 1 := by
apply ne_of_lt; rcases (nontrivial_bcubes h v).exists_ne (mi h v) with ⟨i, hi, h2i⟩
apply lt_of_lt_of_le _ h.b_add_w_le_one; exact i; exact 0
rw [xm, mi_mem_bcubes.1, hi.1, _root_.add_lt_add_iff_left]
exact mi_strict_minimal h2i.symm hi
· apply lt_of_lt_of_le _ h.b_add_w_le_one
· exact i
· exact 0
rw [xm, mi_mem_bcubes.1, hi.1, _root_.add_lt_add_iff_left]
exact mi_strict_minimal h2i.symm hi
#align theorems_100.«82».mi_xm_ne_one Theorems100.«82».mi_xm_ne_one

/-- If `mi` lies on the boundary of the valley in dimension j, then this lemma expresses that all
Expand All @@ -382,8 +394,8 @@ theorem smallest_onBoundary {j} (bi : OnBoundary (mi_mem_bcubes : mi h v ∈ _)
· simp [side, bi, hw', w_lt_w h v hi]
· intro h'; simpa [lt_irrefl] using h'.2
intro i' hi' i'_i h2i'; constructor
apply le_trans h2i'.1
· simp [hw']
· apply le_trans h2i'.1
simp [hw']
apply lt_of_lt_of_le (add_lt_add_left (mi_strict_minimal i'_i.symm hi') _)
simp [bi.symm, b_le_b hi']
let s := bcubes cs c \ {i}
Expand All @@ -401,7 +413,7 @@ theorem smallest_onBoundary {j} (bi : OnBoundary (mi_mem_bcubes : mi h v ∈ _)
rw [add_assoc, le_add_iff_nonneg_right, ← sub_eq_add_neg, sub_nonneg]
apply le_of_lt (w_lt_w h v hi')
· simp only [side, not_and_or, not_lt, not_le, mem_Ico]; left; exact hx
intro i'' hi'' h2i'' h3i''; constructor; swap; apply lt_trans hx h3i''.2
intro i'' hi'' h2i'' h3i''; constructor; swap; · apply lt_trans hx h3i''.2
rw [le_sub_iff_add_le]
refine' le_trans _ (t_le_t hi'' j); rw [add_le_add_iff_left]; apply h3i' i'' ⟨hi'', _⟩
simp [mem_singleton, h2i'']
Expand Down Expand Up @@ -429,14 +441,16 @@ theorem mi_not_onBoundary (j : Fin n) : ¬OnBoundary (mi_mem_bcubes : mi h v ∈
have h2i' : i' ∈ bcubes cs c := ⟨hi'.1.symm, v.2.1 i' hi'.1.symm ⟨tail p, hi'.2, hp.2⟩⟩
have i_i' : i ≠ i' := by rintro rfl; simpa [p, side_tail, h2x] using hi'.2 j
have : Nonempty (↥((cs i').tail.side j' \ (cs i).tail.side j')) := by
apply nonempty_Ico_sdiff; apply mi_strict_minimal i_i' h2i'; apply hw
apply nonempty_Ico_sdiff
· apply mi_strict_minimal i_i' h2i'
· apply hw
rcases this with ⟨⟨x', hx'⟩⟩
let p' : Fin (n + 1) → ℝ := cons (c.b 0) fun j₂ => if j₂ = j' then x' else (cs i).b j₂.succ
have hp' : p' ∈ c.bottom := by
suffices ∀ j : Fin n, ite (j = j') x' ((cs i).b j.succ) ∈ c.side j.succ by
simpa [p', bottom, toSet, tail, side_tail]
intro j₂
by_cases hj₂ : j₂ = j'; simp [hj₂]; apply tail_sub h2i'; apply hx'.1
by_cases hj₂ : j₂ = j'; · simp [hj₂]; apply tail_sub h2i'; apply hx'.1
simp only [if_congr, if_false, hj₂]; apply tail_sub hi; apply b_mem_side
rcases v.1 hp' with ⟨_, ⟨i'', rfl⟩, hi''⟩
have h2i'' : i'' ∈ bcubes cs c := ⟨hi''.1.symm, v.2.1 i'' hi''.1.symm ⟨tail p', hi''.2, hp'.2⟩⟩
Expand Down Expand Up @@ -474,7 +488,7 @@ theorem mi_not_onBoundary' (j : Fin n) :
have := mi_not_onBoundary h v j
simp only [OnBoundary, not_or] at this; cases' this with h1 h2
constructor
apply lt_of_le_of_ne (b_le_b mi_mem_bcubes _) h1
· apply lt_of_le_of_ne (b_le_b mi_mem_bcubes _) h1
apply lt_of_le_of_ne _ h2
apply ((Ico_subset_Ico_iff _).mp (tail_sub mi_mem_bcubes j)).2
simp [hw]
Expand Down Expand Up @@ -512,7 +526,9 @@ theorem valley_mi : Valley cs (cs (mi h v)).shiftUp := by
rcases v.1 hp with ⟨_, ⟨i'', rfl⟩, hi''⟩
have h2i'' : i'' ∈ bcubes cs c := by
use hi''.1.symm; apply v.2.1 i'' hi''.1.symm
use tail p; constructor; exact hi''.2; rw [tail_cons]; exact h3p3
use tail p; constructor
· exact hi''.2
· rw [tail_cons]; exact h3p3
have h3i'' : (cs i).w < (cs i'').w := by
apply mi_strict_minimal _ h2i''; rintro rfl; apply h2p3; convert hi''.2
let p' := @cons n (fun _ => ℝ) (cs i).xm p3
Expand Down
6 changes: 3 additions & 3 deletions Archive/Wiedijk100Theorems/Partition.lean
Original file line number Diff line number Diff line change
Expand Up @@ -215,7 +215,7 @@ theorem partialGF_prop (α : Type*) [CommSemiring α] (n : ℕ) (s : Finset ℕ)
exact fun hi _ => ha.2 i hi
· conv_rhs => simp [← a.parts_sum]
rw [sum_multiset_count_of_subset _ s]
simp only [smul_eq_mul]
· simp only [smul_eq_mul]
· intro i
simp only [Multiset.mem_toFinset, not_not, mem_filter]
apply ha.2
Expand All @@ -229,8 +229,8 @@ theorem partialGF_prop (α : Type*) [CommSemiring α] (n : ℕ) (s : Finset ℕ)
by_cases hi : i = 0
· rw [hi]
rw [Multiset.count_eq_zero_of_not_mem]
rw [Multiset.count_eq_zero_of_not_mem]
intro a; exact Nat.lt_irrefl 0 (hs 0 (hp₂.2 0 a))
· rw [Multiset.count_eq_zero_of_not_mem]
intro a; exact Nat.lt_irrefl 0 (hs 0 (hp₂.2 0 a))
intro a; exact Nat.lt_irrefl 0 (hs 0 (hp₁.2 0 a))
· rw [← mul_left_inj' hi]
rw [Function.funext_iff] at h
Expand Down
14 changes: 7 additions & 7 deletions Counterexamples/Cyclotomic105.lean
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ theorem cyclotomic_15 : cyclotomic 15 ℤ = 1 - X + X ^ 3 - X ^ 4 + X ^ 5 - X ^
refine' ((eq_cyclotomic_iff (by norm_num) _).2 _).symm
rw [properDivisors_15, Finset.prod_insert _, Finset.prod_insert _, Finset.prod_singleton,
cyclotomic_one, cyclotomic_3, cyclotomic_5]
ring
· ring
repeat' norm_num
#align counterexample.cyclotomic_15 Counterexample.cyclotomic_15

Expand All @@ -79,7 +79,7 @@ theorem cyclotomic_21 :
refine' ((eq_cyclotomic_iff (by norm_num) _).2 _).symm
rw [properDivisors_21, Finset.prod_insert _, Finset.prod_insert _, Finset.prod_singleton,
cyclotomic_one, cyclotomic_3, cyclotomic_7]
ring
· ring
repeat' norm_num
#align counterexample.cyclotomic_21 Counterexample.cyclotomic_21

Expand All @@ -90,7 +90,7 @@ theorem cyclotomic_35 :
refine' ((eq_cyclotomic_iff (by norm_num) _).2 _).symm
rw [properDivisors_35, Finset.prod_insert _, Finset.prod_insert _, Finset.prod_singleton,
cyclotomic_one, cyclotomic_5, cyclotomic_7]
ring
· ring
repeat' norm_num
#align counterexample.cyclotomic_35 Counterexample.cyclotomic_35

Expand All @@ -102,10 +102,10 @@ theorem cyclotomic_105 :
X ^ 46 + X ^ 47 + X ^ 48 := by
refine' ((eq_cyclotomic_iff (by norm_num) _).2 _).symm
rw [properDivisors_105]
repeat' rw [Finset.prod_insert (α := ℕ) (β := ℤ[X])]
rw [Finset.prod_singleton, cyclotomic_one, cyclotomic_3, cyclotomic_5, cyclotomic_7,
cyclotomic_15, cyclotomic_21, cyclotomic_35]
ring
repeat rw [Finset.prod_insert (α := ℕ) (β := ℤ[X])]
· rw [Finset.prod_singleton, cyclotomic_one, cyclotomic_3, cyclotomic_5, cyclotomic_7,
cyclotomic_15, cyclotomic_21, cyclotomic_35]
ring
repeat' norm_num
#align counterexample.cyclotomic_105 Counterexample.cyclotomic_105

Expand Down
4 changes: 2 additions & 2 deletions Counterexamples/DirectSumIsInternal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -60,8 +60,8 @@ theorem withSign.isCompl : IsCompl ℤ≥0 ℤ≤0 := by
· rw [codisjoint_iff_le_sup]
intro x _hx
obtain hp | hn := (le_refl (0 : ℤ)).le_or_le x
exact Submodule.mem_sup_left (mem_withSign_one.mpr hp)
exact Submodule.mem_sup_right (mem_withSign_neg_one.mpr hn)
· exact Submodule.mem_sup_left (mem_withSign_one.mpr hp)
· exact Submodule.mem_sup_right (mem_withSign_neg_one.mpr hn)
#align counterexample.with_sign.is_compl Counterexample.withSign.isCompl

def withSign.independent : CompleteLattice.Independent withSign := by
Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Algebra/BigOperators/Finprod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1033,9 +1033,9 @@ theorem finprod_subtype_eq_finprod_cond (p : α → Prop) :
theorem finprod_mem_inter_mul_diff' (t : Set α) (h : (s ∩ mulSupport f).Finite) :
((∏ᶠ i ∈ s ∩ t, f i) * ∏ᶠ i ∈ s \ t, f i) = ∏ᶠ i ∈ s, f i := by
rw [← finprod_mem_union', inter_union_diff]
rw [disjoint_iff_inf_le]
exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩,
h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
· rw [disjoint_iff_inf_le]
exact fun x hx => hx.2.2 hx.1.2
exacts [h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
#align finprod_mem_inter_mul_diff' finprod_mem_inter_mul_diff'
#align finsum_mem_inter_add_diff' finsum_mem_inter_add_diff'

Expand Down
3 changes: 2 additions & 1 deletion Mathlib/Algebra/BigOperators/List/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,8 @@ theorem prod_cons : (a :: l).prod = a * l.prod :=
lemma prod_induction
(p : M → Prop) (hom : ∀ a b, p a → p b → p (a * b)) (unit : p 1) (base : ∀ x ∈ l, p x) :
p l.prod := by
induction' l with a l ih; simpa
induction' l with a l ih
· simpa
rw [List.prod_cons]
simp only [Bool.not_eq_true, List.mem_cons, forall_eq_or_imp] at base
exact hom _ _ (base.1) (ih base.2)
Expand Down
14 changes: 7 additions & 7 deletions Mathlib/Algebra/Category/Ring/Constructions.lean
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,13 @@ def pushoutCocone : Limits.PushoutCocone f g := by
letI := RingHom.toAlgebra f
letI := RingHom.toAlgebra g
fapply Limits.PushoutCocone.mk
show CommRingCat; exact CommRingCat.of (A ⊗[R] B)
show A ⟶ _; exact Algebra.TensorProduct.includeLeftRingHom
show B ⟶ _; exact Algebra.TensorProduct.includeRight.toRingHom
ext r
trans algebraMap R (A ⊗[R] B) r
· exact Algebra.TensorProduct.includeLeft.commutes (R := R) r
· exact (Algebra.TensorProduct.includeRight.commutes (R := R) r).symm
· show CommRingCat; exact CommRingCat.of (A ⊗[R] B)
· show A ⟶ _; exact Algebra.TensorProduct.includeLeftRingHom
· show B ⟶ _; exact Algebra.TensorProduct.includeRight.toRingHom
· ext r
trans algebraMap R (A ⊗[R] B) r
· exact Algebra.TensorProduct.includeLeft.commutes (R := R) r
· exact (Algebra.TensorProduct.includeRight.commutes (R := R) r).symm
set_option linter.uppercaseLean3 false in
#align CommRing.pushout_cocone CommRingCat.pushoutCocone

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,7 @@ theorem one_le_succ_nth_stream_b {ifp_succ_n : IntFractPair K}
obtain ⟨ifp_n, nth_stream_eq, stream_nth_fr_ne_zero, ⟨-⟩⟩ :
∃ ifp_n,
IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n
exact succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq
· exact succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq
suffices 1 ≤ ifp_n.fr⁻¹ by rwa [IntFractPair.of, le_floor, cast_one]
suffices ifp_n.fr ≤ 1 by
have h : 0 < ifp_n.fr :=
Expand Down Expand Up @@ -474,7 +474,7 @@ theorem abs_sub_convergents_le (not_terminated_at_n : ¬(of v).TerminatedAt n) :
obtain ⟨ifp_n, stream_nth_eq, stream_nth_fr_ne_zero, if_of_eq_ifp_succ_n⟩ :
∃ ifp_n,
IntFractPair.stream v n = some ifp_n ∧ ifp_n.fr ≠ 0 ∧ IntFractPair.of ifp_n.fr⁻¹ = ifp_succ_n
exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq
· exact IntFractPair.succ_nth_stream_eq_some_iff.1 succ_nth_stream_eq
let denom' := conts.b * (pred_conts.b + ifp_n.fr⁻¹ * conts.b)
-- now we can use `sub_convergents_eq` to simplify our goal
suffices |(-1) ^ n / denom'| ≤ 1 / denom by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/GCDMonoid/Finset.lean
Original file line number Diff line number Diff line change
Expand Up @@ -275,7 +275,7 @@ theorem extract_gcd (f : β → α) (hs : s.Nonempty) :
push_neg at h
refine' ⟨fun b ↦ if hb : b ∈ s then g' hb else 0, fun b hb ↦ _,
extract_gcd' f _ h fun b hb ↦ _⟩
simp only [hb, hg, dite_true]
· simp only [hb, hg, dite_true]
rw [dif_pos hb, hg hb]
#align finset.extract_gcd Finset.extract_gcd

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/GeomSum.lean
Original file line number Diff line number Diff line change
Expand Up @@ -507,8 +507,8 @@ theorem geom_sum_alternating_of_lt_neg_one [StrictOrderedRing α] (hx : x + 1 <
by_cases hn' : Even n
· rw [if_pos hn'] at ihn
rw [if_neg, lt_add_iff_pos_left]
exact mul_pos_of_neg_of_neg hx0 ihn
exact not_not_intro hn'
· exact mul_pos_of_neg_of_neg hx0 ihn
· exact not_not_intro hn'
· rw [if_neg hn'] at ihn
rw [if_pos]
swap
Expand Down
6 changes: 5 additions & 1 deletion Mathlib/Algebra/GroupPower/Order.lean
Original file line number Diff line number Diff line change
Expand Up @@ -436,7 +436,11 @@ protected lemma Even.add_pow_le (hn : ∃ k, 2 * k = n) :
rw [Commute.mul_pow]; simp [Commute, SemiconjBy, two_mul, mul_two]
_ ≤ 2 ^ n * (2 ^ (n - 1) * ((a ^ 2) ^ n + (b ^ 2) ^ n)) := mul_le_mul_of_nonneg_left
(add_pow_le (sq_nonneg _) (sq_nonneg _) _) $ pow_nonneg (zero_le_two (α := R)) _
_ = _ := by simp only [← mul_assoc, ← pow_add, ← pow_mul]; cases n; rfl; simp [Nat.two_mul]
_ = _ := by
simp only [← mul_assoc, ← pow_add, ← pow_mul]
cases n
· rfl
· simp [Nat.two_mul]

end LinearOrderedSemiring

Expand Down
Loading

0 comments on commit 83abaca

Please sign in to comment.