Skip to content

Commit

Permalink
fixed letters for categories
Browse files Browse the repository at this point in the history
  • Loading branch information
joelriou committed May 9, 2024
1 parent 0eecaba commit 778a048
Showing 1 changed file with 11 additions and 11 deletions.
22 changes: 11 additions & 11 deletions Mathlib/CategoryTheory/Functor/KanExtension/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -268,21 +268,21 @@ end

section

variable {L : C ⥤ H} {L' : C ⥤ H'} (G : HH') (e : L ⋙ G ≅ L') (F : C ⥤ D)
variable {L : C ⥤ D} {L' : C ⥤ D'} (G : DD') (e : L ⋙ G ≅ L') (F : C ⥤ H)

/-- The functor `LeftExtension L' F ⥤ LeftExtension L F` induced by an isomorphism
`L ⋙ G ≅ L'`. -/
@[simps!]
def LeftExtension.postcomp₁ : LeftExtension L' F ⥤ LeftExtension L F :=
StructuredArrow.map₂ (F := (whiskeringLeft H H' D).obj G) (G := 𝟭 _) (𝟙 _)
((whiskeringLeft C H' D).map e.inv)
StructuredArrow.map₂ (F := (whiskeringLeft D D' H).obj G) (G := 𝟭 _) (𝟙 _)
((whiskeringLeft C D' H).map e.inv)

/-- The functor `RightExtension L' F ⥤ RightExtension L F` induced by an isomorphism
`L ⋙ G ≅ L'`. -/
@[simps!]
def RightExtension.postcomp₁ : RightExtension L' F ⥤ RightExtension L F :=
CostructuredArrow.map₂ (F := (whiskeringLeft H H' D).obj G) (G := 𝟭 _)
((whiskeringLeft C H' D).map e.hom) (𝟙 _)
CostructuredArrow.map₂ (F := (whiskeringLeft D D' H).obj G) (G := 𝟭 _)
((whiskeringLeft C D' H).map e.hom) (𝟙 _)

variable [IsEquivalence G]

Expand Down Expand Up @@ -344,19 +344,19 @@ end

section

variable (L : C ⥤ H) (F : C ⥤ D) (F' : HD) (G : C' ⥤ C)
variable (L : C ⥤ D) (F : C ⥤ H) (F' : DH) (G : C' ⥤ C)

/-- The functor `LeftExtension L F ⥤ LeftExtension (G ⋙ L) (G ⋙ F)`
obtained by precomposition. -/
@[simps!]
def LeftExtension.precomp : LeftExtension L F ⥤ LeftExtension (G ⋙ L) (G ⋙ F) :=
StructuredArrow.map₂ (F := 𝟭 _) (G := (whiskeringLeft C' C D).obj G) (𝟙 _) (𝟙 _)
StructuredArrow.map₂ (F := 𝟭 _) (G := (whiskeringLeft C' C H).obj G) (𝟙 _) (𝟙 _)

/-- The functor `RightExtension L F ⥤ RightExtension (G ⋙ L) (G ⋙ F)`
obtained by precomposition. -/
@[simps!]
def RightExtension.precomp : RightExtension L F ⥤ RightExtension (G ⋙ L) (G ⋙ F) :=
CostructuredArrow.map₂ (F := 𝟭 _) (G := (whiskeringLeft C' C D).obj G) (𝟙 _) (𝟙 _)
CostructuredArrow.map₂ (F := 𝟭 _) (G := (whiskeringLeft C' C H).obj G) (𝟙 _) (𝟙 _)

variable [IsEquivalence G]

Expand Down Expand Up @@ -450,7 +450,7 @@ end

section

variable {L : C ⥤ H} {F₁ F₂ : C ⥤ D}
variable {L : C ⥤ D} {F₁ F₂ : C ⥤ H}

/-- When two left extensions `α₁ : LeftExtension L F₁` and `α₂ : LeftExtension L F₂`
are essentially the same via an isomorphism of functors `F₁ ≅ F₂`,
Expand All @@ -464,7 +464,7 @@ noncomputable def LeftExtension.isUniversalEquivOfIso₂
(IsInitial.equivOfIso (StructuredArrow.isoMk e'
(by simp [leftExtensionEquivalenceOfIso₂, h])))

lemma isLeftKanExtension_iff_of_iso₂ {F₁' F₂' : HD} (α₁ : F₁ ⟶ L ⋙ F₁') (α₂ : F₂ ⟶ L ⋙ F₂')
lemma isLeftKanExtension_iff_of_iso₂ {F₁' F₂' : DH} (α₁ : F₁ ⟶ L ⋙ F₁') (α₂ : F₂ ⟶ L ⋙ F₂')
(e : F₁ ≅ F₂) (e' : F₁' ≅ F₂') (h : α₁ ≫ whiskerLeft L e'.hom = e.hom ≫ α₂) :
F₁'.IsLeftKanExtension α₁ ↔ F₂'.IsLeftKanExtension α₂ := by
let eq := LeftExtension.isUniversalEquivOfIso₂ (LeftExtension.mk _ α₁)
Expand All @@ -485,7 +485,7 @@ noncomputable def RightExtension.isUniversalEquivOfIso₂
(IsTerminal.equivOfIso (CostructuredArrow.isoMk e'
(by simp [rightExtensionEquivalenceOfIso₂, h])))

lemma isRightKanExtension_iff_of_iso₂ {F₁' F₂' : HD} (α₁ : L ⋙ F₁' ⟶ F₁) (α₂ : L ⋙ F₂' ⟶ F₂)
lemma isRightKanExtension_iff_of_iso₂ {F₁' F₂' : DH} (α₁ : L ⋙ F₁' ⟶ F₁) (α₂ : L ⋙ F₂' ⟶ F₂)
(e : F₁ ≅ F₂) (e' : F₁' ≅ F₂') (h : whiskerLeft L e'.hom ≫ α₂ = α₁ ≫ e.hom) :
F₁'.IsRightKanExtension α₁ ↔ F₂'.IsRightKanExtension α₂ := by
let eq := RightExtension.isUniversalEquivOfIso₂ (RightExtension.mk _ α₁)
Expand Down

0 comments on commit 778a048

Please sign in to comment.