Skip to content

Commit

Permalink
chore(Condensed): shorten some names (#17075)
Browse files Browse the repository at this point in the history
  • Loading branch information
dagurtomas committed Sep 25, 2024
1 parent a95aae1 commit 65888ad
Showing 1 changed file with 8 additions and 10 deletions.
18 changes: 8 additions & 10 deletions Mathlib/Condensed/Discrete/LocallyConstant.lean
Original file line number Diff line number Diff line change
Expand Up @@ -186,8 +186,7 @@ def componentHom (a : Fiber (f.comap g)) :
simp only [Fiber.mk, Set.mem_preimage, Set.mem_singleton_iff]
convert map_eq_image _ _ x
exact map_preimage_eq_image_map _ _ a⟩
continuous_toFun := by
exact Continuous.subtype_mk (Continuous.comp g.continuous continuous_subtype_val) _
continuous_toFun := by exact Continuous.subtype_mk (g.continuous.comp continuous_subtype_val) _
-- term mode gives "unknown free variable" error.

lemma incl_comap {S T : (CompHausLike P)ᵒᵖ}
Expand Down Expand Up @@ -221,31 +220,30 @@ variable (P) (X : TopCat.{max u w})
(hs : ∀ ⦃X Y : CompHausLike P⦄ (f : X ⟶ Y), EffectiveEpi f → Function.Surjective f)

/-- `locallyConstantIsoContinuousMap` is a natural isomorphism. -/
noncomputable def functorToPresheavesIsoTopCatToSheafCompHausLike (X : Type (max u w)) :
functorToPresheaves.{u, w}.obj X ≅
((topCatToSheafCompHausLike P hs).obj (TopCat.discrete.obj X)).val :=
noncomputable def functorToPresheavesIso (X : Type (max u w)) :
functorToPresheaves.{u, w}.obj X ≅ ((TopCat.discrete.obj X).toSheafCompHausLike P hs).val :=
NatIso.ofComponents (fun S ↦ locallyConstantIsoContinuousMap _ _)

/-- `CompHausLike.LocallyConstant.functorToPresheaves` lands in sheaves. -/
@[simps]
def functor :
have := CompHausLike.preregular hs
haveI := CompHausLike.preregular hs
Type (max u w) ⥤ Sheaf (coherentTopology (CompHausLike.{u} P)) (Type (max u w)) where
obj X := {
val := functorToPresheaves.{u, w}.obj X
cond := by
rw [Presheaf.isSheaf_of_iso_iff (functorToPresheavesIsoTopCatToSheafCompHausLike P hs X)]
exact ((topCatToSheafCompHausLike P hs).obj (TopCat.discrete.obj X)).cond }
rw [Presheaf.isSheaf_of_iso_iff (functorToPresheavesIso P hs X)]
exact ((TopCat.discrete.obj X).toSheafCompHausLike P hs).cond }
map f := ⟨functorToPresheaves.{u, w}.map f⟩

/--
`CompHausLike.LocallyConstant.functor` is naturally isomorphic to the restriction of
`topCatToSheafCompHausLike` to discrete topological spaces.
-/
noncomputable def functorIsoTopCatToSheafCompHausLike :
noncomputable def functorIso :
functor.{u, w} P hs ≅ TopCat.discrete.{max w u} ⋙ topCatToSheafCompHausLike P hs :=
NatIso.ofComponents (fun X ↦ (fullyFaithfulSheafToPresheaf _ _).preimageIso
(functorToPresheavesIsoTopCatToSheafCompHausLike P hs X))
(functorToPresheavesIso P hs X))

/-- The counit is natural in both `S : CompHausLike P` and
`Y : Sheaf (coherentTopology (CompHausLike P)) (Type (max u w))` -/
Expand Down

0 comments on commit 65888ad

Please sign in to comment.