Skip to content

Commit

Permalink
feat(SetTheory/Ordinal/Exponential): more lemmas on opow (#17804)
Browse files Browse the repository at this point in the history
  • Loading branch information
vihdzp committed Oct 16, 2024
1 parent 8591fb6 commit 4fde5a5
Showing 1 changed file with 8 additions and 1 deletion.
9 changes: 8 additions & 1 deletion Mathlib/SetTheory/Ordinal/Exponential.lean
Original file line number Diff line number Diff line change
Expand Up @@ -157,6 +157,9 @@ theorem opow_le_opow_left {a b : Ordinal} (c : Ordinal) (ab : a ≤ b) : a ^ c
(opow_le_of_limit a0 l).2 fun b' h =>
(IH _ h).trans (opow_le_opow_right ((Ordinal.pos_iff_ne_zero.2 a0).trans_le ab) h.le)

theorem opow_le_opow {a b c d : Ordinal} (hac : a ≤ c) (hbd : b ≤ d) (hc : 0 < c) : a ^ b ≤ c ^ d :=
(opow_le_opow_left b hac).trans (opow_le_opow_right hc hbd)

theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b := by
nth_rw 1 [← opow_one a]
cases' le_or_gt a 1 with a1 a1
Expand All @@ -167,8 +170,12 @@ theorem left_le_opow (a : Ordinal) {b : Ordinal} (b1 : 0 < b) : a ≤ a ^ b := b
rw [a1, one_opow, one_opow]
rwa [opow_le_opow_iff_right a1, one_le_iff_pos]

theorem left_lt_opow {a b : Ordinal} (ha : 1 < a) (hb : 1 < b) : a < a ^ b := by
conv_lhs => rw [← opow_one a]
rwa [opow_lt_opow_iff_right ha]

theorem right_le_opow {a : Ordinal} (b : Ordinal) (a1 : 1 < a) : b ≤ a ^ b :=
(isNormal_opow a1).id_le _
(isNormal_opow a1).le_apply

theorem opow_lt_opow_left_of_succ {a b c : Ordinal} (ab : a < b) : a ^ succ c < b ^ succ c := by
rw [opow_succ, opow_succ]
Expand Down

0 comments on commit 4fde5a5

Please sign in to comment.