Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/master' into bump/v4.14.0
Browse files Browse the repository at this point in the history
  • Loading branch information
jcommelin committed Oct 17, 2024
2 parents 232c4fd + 4dfa80d commit 3ed6b80
Showing 1 changed file with 11 additions and 0 deletions.
11 changes: 11 additions & 0 deletions Mathlib/Algebra/Polynomial/BigOperators.lean
Original file line number Diff line number Diff line change
Expand Up @@ -193,10 +193,21 @@ theorem natDegree_multiset_prod_of_monic (h : ∀ f ∈ t, Monic f) :
assumption
· simp

theorem degree_multiset_prod_of_monic [Nontrivial R] (h : ∀ f ∈ t, Monic f) :
t.prod.degree = (t.map degree).sum := by
have : t.prod ≠ 0 := Monic.ne_zero <| by simpa using monic_multiset_prod_of_monic _ _ h
rw [degree_eq_natDegree this, natDegree_multiset_prod_of_monic _ h, Nat.cast_multiset_sum,
Multiset.map_map, Function.comp_def,
Multiset.map_congr rfl (fun f hf => (degree_eq_natDegree (h f hf).ne_zero).symm)]

theorem natDegree_prod_of_monic (h : ∀ i ∈ s, (f i).Monic) :
(∏ i ∈ s, f i).natDegree = ∑ i ∈ s, (f i).natDegree := by
simpa using natDegree_multiset_prod_of_monic (s.1.map f) (by simpa using h)

theorem degree_prod_of_monic [Nontrivial R] (h : ∀ i ∈ s, (f i).Monic) :
(∏ i ∈ s, f i).degree = ∑ i ∈ s, (f i).degree := by
simpa using degree_multiset_prod_of_monic (s.1.map f) (by simpa using h)

theorem coeff_multiset_prod_of_natDegree_le (n : ℕ) (hl : ∀ p ∈ t, natDegree p ≤ n) :
coeff t.prod ((Multiset.card t) * n) = (t.map fun p => coeff p n).prod := by
induction t using Quotient.inductionOn
Expand Down

0 comments on commit 3ed6b80

Please sign in to comment.