Skip to content

Commit

Permalink
feat: isometric continuous functional calculi (#17837)
Browse files Browse the repository at this point in the history
  • Loading branch information
j-loreaux committed Oct 27, 2024
1 parent c57a78f commit 380f469
Show file tree
Hide file tree
Showing 5 changed files with 530 additions and 0 deletions.
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1005,6 +1005,7 @@ import Mathlib.Analysis.CStarAlgebra.Classes
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Basic
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Instances
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Integral
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Isometric
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.NonUnital
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Order
import Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.PosPart
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -169,10 +169,30 @@ instance IsStarNormal.instContinuousFunctionalCalculus {A : Type*} [CStarAlgebra
AlgEquiv.spectrum_eq (continuousFunctionalCalculus a), ContinuousMap.spectrum_eq_range]
case predicate_hom => exact fun f ↦ ⟨by rw [← map_star]; exact Commute.all (star f) f |>.map _⟩

lemma cfcHom_eq_of_isStarNormal {A : Type*} [CStarAlgebra A] (a : A) [ha : IsStarNormal a] :
cfcHom ha = (elementalStarAlgebra ℂ a).subtype.comp (continuousFunctionalCalculus a) := by
refine cfcHom_eq_of_continuous_of_map_id ha _ ?_ ?_
· exact continuous_subtype_val.comp <|
(StarAlgEquiv.isometry (continuousFunctionalCalculus a)).continuous
· simp [continuousFunctionalCalculus_map_id a]

instance IsStarNormal.instNonUnitalContinuousFunctionalCalculus {A : Type*}
[NonUnitalCStarAlgebra A] : NonUnitalContinuousFunctionalCalculus ℂ (IsStarNormal : A → Prop) :=
RCLike.nonUnitalContinuousFunctionalCalculus Unitization.isStarNormal_inr

open Unitization in
lemma inr_comp_cfcₙHom_eq_cfcₙAux {A : Type*} [NonUnitalCStarAlgebra A] (a : A)
[ha : IsStarNormal a] : (inrNonUnitalStarAlgHom ℂ A).comp (cfcₙHom ha) =
cfcₙAux (isStarNormal_inr (R := ℂ) (A := A)) a ha := by
have h (a : A) := isStarNormal_inr (R := ℂ) (A := A) (a := a)
refine @UniqueNonUnitalContinuousFunctionalCalculus.eq_of_continuous_of_map_id
_ _ _ _ _ _ _ _ _ _ _ inferInstance inferInstance _ (σₙ ℂ a) _ _ rfl _ _ ?_ ?_ ?_
· show Continuous (fun f ↦ (cfcₙHom ha f : Unitization ℂ A)); fun_prop
· exact isClosedEmbedding_cfcₙAux @(h) a ha |>.continuous
· trans (a : Unitization ℂ A)
· congrm(inr $(cfcₙHom_id ha))
· exact cfcₙAux_id @(h) a ha |>.symm

end Normal

/-!
Expand Down
Loading

0 comments on commit 380f469

Please sign in to comment.