Skip to content

Commit

Permalink
don't need this here
Browse files Browse the repository at this point in the history
  • Loading branch information
vihdzp committed Sep 20, 2024
1 parent 33b95b3 commit 3079d3d
Show file tree
Hide file tree
Showing 2 changed files with 12 additions and 4 deletions.
3 changes: 1 addition & 2 deletions Mathlib/SetTheory/Ordinal/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1451,8 +1451,7 @@ theorem type_fin (n : ℕ) : @type (Fin n) (· < ·) _ = n := by simp

end Ordinal

/-! ### Sorted lists -/

@[deprecated (since := "2024-09-20")]
theorem List.Sorted.lt_ord_of_lt [LinearOrder α] [IsWellOrder α (· < ·)] {l m : List α}
{o : Ordinal} (hl : l.Sorted (· > ·)) (hm : m.Sorted (· > ·)) (hmltl : m < l)
(hlt : ∀ i ∈ l, Ordinal.typein (· < ·) i < o) : ∀ i ∈ m, Ordinal.typein (· < ·) i < o := by
Expand Down
13 changes: 11 additions & 2 deletions Mathlib/Topology/Category/Profinite/Nobeling.lean
Original file line number Diff line number Diff line change
Expand Up @@ -903,9 +903,19 @@ theorem injective_πs' {o₁ o₂ : Ordinal} (h : o₁ ≤ o₂) : Function.Inje

namespace Products

open List in
theorem lt_ord_of_lt {l m : Products I} {o : Ordinal} (h₁ : m < l)
(h₂ : ∀ i ∈ l.val, ord I i < o) : ∀ i ∈ m.val, ord I i < o :=
List.Sorted.lt_ord_of_lt (List.chain'_iff_pairwise.mp l.2) (List.chain'_iff_pairwise.mp m.2) h₁ h₂
match l with
| ⟨[], _⟩ => (Lex.not_nil_right _ _ h₁).elim
| ⟨a::l, _⟩ => by
intro i hi
have : Inhabited I := ⟨i⟩
have hm : Sorted (· > ·) m.1 := chain'_iff_pairwise.mp m.2
apply lt_of_le_of_lt _ (h₂ _ <| List.head!_mem_self (cons_ne_nil a l))
apply (Ordinal.typein_le_typein _).2
rw [not_lt]
exact ((hm.le_head! hi).trans <| List.head!_le_of_lt _ _ h₁ (ne_nil_of_mem hi))

theorem eval_πs {l : Products I} {o : Ordinal} (hlt : ∀ i ∈ l.val, ord I i < o) :
πs C o (l.eval (π C (ord I · < o))) = l.eval C := by
Expand Down Expand Up @@ -1476,7 +1486,6 @@ theorem span_sum : Set.range (eval C) = Set.range (Sum.elim
rw [← sum_equiv_comp_eval_eq_elim C hsC ho, Equiv.toFun_as_coe,
EquivLike.range_comp (e := sum_equiv C hsC ho)]


theorem square_commutes : SumEval C ho ∘ Sum.inl =
ModuleCat.ofHom (πs C o) ∘ eval (π C (ord I · < o)) := by
ext l
Expand Down

0 comments on commit 3079d3d

Please sign in to comment.