Skip to content

Commit

Permalink
chore: Rename to Grp (#3731)
Browse files Browse the repository at this point in the history
This is a proposal to rename what was in mathlib `Group` and in mathlib4 `GroupCat` to its literature name `Grp`. This has the advantage not to conflict with `group` that has been capitalised to `Group` and to be shorter.
  • Loading branch information
YaelDillies committed Jun 20, 2024
1 parent 4bf28bb commit 2e6f6df
Show file tree
Hide file tree
Showing 70 changed files with 1,655 additions and 1,653 deletions.
46 changes: 23 additions & 23 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -56,25 +56,25 @@ import Mathlib.Algebra.Category.BoolRing
import Mathlib.Algebra.Category.CoalgebraCat.Basic
import Mathlib.Algebra.Category.FGModuleCat.Basic
import Mathlib.Algebra.Category.FGModuleCat.Limits
import Mathlib.Algebra.Category.GroupCat.Abelian
import Mathlib.Algebra.Category.GroupCat.Adjunctions
import Mathlib.Algebra.Category.GroupCat.Basic
import Mathlib.Algebra.Category.GroupCat.Biproducts
import Mathlib.Algebra.Category.GroupCat.Colimits
import Mathlib.Algebra.Category.GroupCat.EnoughInjectives
import Mathlib.Algebra.Category.GroupCat.EpiMono
import Mathlib.Algebra.Category.GroupCat.EquivalenceGroupAddGroup
import Mathlib.Algebra.Category.GroupCat.FilteredColimits
import Mathlib.Algebra.Category.GroupCat.ForgetCorepresentable
import Mathlib.Algebra.Category.GroupCat.Images
import Mathlib.Algebra.Category.GroupCat.Injective
import Mathlib.Algebra.Category.GroupCat.Kernels
import Mathlib.Algebra.Category.GroupCat.Limits
import Mathlib.Algebra.Category.GroupCat.Preadditive
import Mathlib.Algebra.Category.GroupCat.Subobject
import Mathlib.Algebra.Category.GroupCat.ZModuleEquivalence
import Mathlib.Algebra.Category.GroupCat.Zero
import Mathlib.Algebra.Category.GroupWithZeroCat
import Mathlib.Algebra.Category.Grp.Abelian
import Mathlib.Algebra.Category.Grp.Adjunctions
import Mathlib.Algebra.Category.Grp.Basic
import Mathlib.Algebra.Category.Grp.Biproducts
import Mathlib.Algebra.Category.Grp.Colimits
import Mathlib.Algebra.Category.Grp.EnoughInjectives
import Mathlib.Algebra.Category.Grp.EpiMono
import Mathlib.Algebra.Category.Grp.EquivalenceGroupAddGroup
import Mathlib.Algebra.Category.Grp.FilteredColimits
import Mathlib.Algebra.Category.Grp.ForgetCorepresentable
import Mathlib.Algebra.Category.Grp.Images
import Mathlib.Algebra.Category.Grp.Injective
import Mathlib.Algebra.Category.Grp.Kernels
import Mathlib.Algebra.Category.Grp.Limits
import Mathlib.Algebra.Category.Grp.Preadditive
import Mathlib.Algebra.Category.Grp.Subobject
import Mathlib.Algebra.Category.Grp.ZModuleEquivalence
import Mathlib.Algebra.Category.Grp.Zero
import Mathlib.Algebra.Category.GrpWithZero
import Mathlib.Algebra.Category.ModuleCat.Abelian
import Mathlib.Algebra.Category.ModuleCat.Adjunctions
import Mathlib.Algebra.Category.ModuleCat.Algebra
Expand Down Expand Up @@ -122,7 +122,7 @@ import Mathlib.Algebra.Category.Ring.Constructions
import Mathlib.Algebra.Category.Ring.FilteredColimits
import Mathlib.Algebra.Category.Ring.Instances
import Mathlib.Algebra.Category.Ring.Limits
import Mathlib.Algebra.Category.SemigroupCat.Basic
import Mathlib.Algebra.Category.Semigrp.Basic
import Mathlib.Algebra.CharP.Algebra
import Mathlib.Algebra.CharP.Basic
import Mathlib.Algebra.CharP.CharAndCard
Expand Down Expand Up @@ -1041,9 +1041,9 @@ import Mathlib.Analysis.Normed.Group.InfiniteSum
import Mathlib.Analysis.Normed.Group.Lemmas
import Mathlib.Analysis.Normed.Group.Pointwise
import Mathlib.Analysis.Normed.Group.Quotient
import Mathlib.Analysis.Normed.Group.SemiNormedGroupCat
import Mathlib.Analysis.Normed.Group.SemiNormedGroupCat.Completion
import Mathlib.Analysis.Normed.Group.SemiNormedGroupCat.Kernels
import Mathlib.Analysis.Normed.Group.SemiNormedGrp
import Mathlib.Analysis.Normed.Group.SemiNormedGrp.Completion
import Mathlib.Analysis.Normed.Group.SemiNormedGrp.Kernels
import Mathlib.Analysis.Normed.Group.Seminorm
import Mathlib.Analysis.Normed.Group.Tannery
import Mathlib.Analysis.Normed.Group.ZeroAtInfty
Expand Down
94 changes: 0 additions & 94 deletions Mathlib/Algebra/Category/GroupCat/EquivalenceGroupAddGroup.lean

This file was deleted.

Original file line number Diff line number Diff line change
Expand Up @@ -3,11 +3,11 @@ Copyright (c) 2020 Markus Himmel. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Markus Himmel
-/
import Mathlib.Algebra.Category.GroupCat.Colimits
import Mathlib.Algebra.Category.GroupCat.FilteredColimits
import Mathlib.Algebra.Category.GroupCat.Kernels
import Mathlib.Algebra.Category.GroupCat.Limits
import Mathlib.Algebra.Category.GroupCat.ZModuleEquivalence
import Mathlib.Algebra.Category.Grp.Colimits
import Mathlib.Algebra.Category.Grp.FilteredColimits
import Mathlib.Algebra.Category.Grp.Kernels
import Mathlib.Algebra.Category.Grp.Limits
import Mathlib.Algebra.Category.Grp.ZModuleEquivalence
import Mathlib.Algebra.Category.ModuleCat.Abelian
import Mathlib.CategoryTheory.Abelian.FunctorCategory
import Mathlib.CategoryTheory.Limits.ConcreteCategory
Expand All @@ -24,26 +24,26 @@ universe u

noncomputable section

namespace AddCommGroupCat
namespace AddCommGrp

variable {X Y Z : AddCommGroupCat.{u}} (f : X ⟶ Y) (g : Y ⟶ Z)
variable {X Y Z : AddCommGrp.{u}} (f : X ⟶ Y) (g : Y ⟶ Z)

/-- In the category of abelian groups, every monomorphism is normal. -/
def normalMono (_ : Mono f) : NormalMono f :=
equivalenceReflectsNormalMono (forget₂ (ModuleCat.{u} ℤ) AddCommGroupCat.{u}).inv <|
equivalenceReflectsNormalMono (forget₂ (ModuleCat.{u} ℤ) AddCommGrp.{u}).inv <|
ModuleCat.normalMono _ inferInstance
set_option linter.uppercaseLean3 false in
#align AddCommGroup.normal_mono AddCommGroupCat.normalMono
#align AddCommGroup.normal_mono AddCommGrp.normalMono

/-- In the category of abelian groups, every epimorphism is normal. -/
def normalEpi (_ : Epi f) : NormalEpi f :=
equivalenceReflectsNormalEpi (forget₂ (ModuleCat.{u} ℤ) AddCommGroupCat.{u}).inv <|
equivalenceReflectsNormalEpi (forget₂ (ModuleCat.{u} ℤ) AddCommGrp.{u}).inv <|
ModuleCat.normalEpi _ inferInstance
set_option linter.uppercaseLean3 false in
#align AddCommGroup.normal_epi AddCommGroupCat.normalEpi
#align AddCommGroup.normal_epi AddCommGrp.normalEpi

/-- The category of abelian groups is abelian. -/
instance : Abelian AddCommGroupCat.{u} where
instance : Abelian AddCommGrp.{u} where
has_finite_products := ⟨HasFiniteProducts.out⟩
normalMonoOfMono := normalMono
normalEpiOfEpi := normalEpi
Expand All @@ -58,7 +58,7 @@ theorem exact_iff : Exact f g ↔ f.range = g.ker := by

/-- The category of abelian groups satisfies Grothedieck's Axiom AB5. -/
instance {J : Type u} [SmallCategory J] [IsFiltered J] :
PreservesFiniteLimits <| colim (J := J) (C := AddCommGroupCat.{u}) := by
PreservesFiniteLimits <| colim (J := J) (C := AddCommGrp.{u}) := by
refine Functor.preservesFiniteLimitsOfMapExact _
fun F G H η γ h => (exact_iff _ _).mpr (le_antisymm ?_ ?_)
all_goals replace h : ∀ j : J, Exact (η.app j) (γ.app j) :=
Expand All @@ -77,4 +77,4 @@ instance {J : Type u} [SmallCategory J] [IsFiltered J] :
erw [← comp_apply, colimit.ι_map, comp_apply, ht]
exact colimit.w_apply G e₁ y

end AddCommGroupCat
end AddCommGrp
Loading

0 comments on commit 2e6f6df

Please sign in to comment.