Skip to content

Commit

Permalink
chore: remove more unused variables (#17749)
Browse files Browse the repository at this point in the history
  • Loading branch information
adomani committed Oct 16, 2024
1 parent ec9e50a commit 2de7871
Show file tree
Hide file tree
Showing 46 changed files with 88 additions and 179 deletions.
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Group/Action/Pi.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ This file defines instances for `MulAction` and related structures on `Pi` types

assert_not_exists MonoidWithZero

variable {ΞΉ M N : Type*} {Ξ± Ξ² Ξ³ : ΞΉ β†’ Type*} (x y : βˆ€ i, Ξ± i) (i : ΞΉ)
variable {ΞΉ M N : Type*} {Ξ± Ξ² Ξ³ : ΞΉ β†’ Type*} (i : ΞΉ)

namespace Pi

Expand Down
6 changes: 3 additions & 3 deletions Mathlib/Algebra/Group/Units/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ the `AddMonoid`."]
instance [Repr Ξ±] : Repr Ξ±Λ£ :=
⟨reprPrec ∘ val⟩

variable (a b c : Ξ±Λ£) {u : Ξ±Λ£}
variable (a b : Ξ±Λ£) {u : Ξ±Λ£}

@[to_additive (attr := simp, norm_cast)]
theorem val_mul : (↑(a * b) : Ξ±) = a * b :=
Expand Down Expand Up @@ -477,7 +477,7 @@ theorem mul_iff [CommMonoid M] {x y : M} : IsUnit (x * y) ↔ IsUnit x ∧ IsUni

section Monoid

variable [Monoid M] {a b c : M}
variable [Monoid M] {a : M}

/-- The element of the group of units, corresponding to an element of a monoid which is a unit. When
`Ξ±` is a `DivisionMonoid`, use `IsUnit.unit'` instead. -/
Expand Down Expand Up @@ -577,7 +577,7 @@ protected lemma mul_div_mul_right (h : IsUnit c) (a b : Ξ±) : a * c / (b * c) =
end DivisionMonoid

section DivisionCommMonoid
variable [DivisionCommMonoid Ξ±] {a b c d : Ξ±}
variable [DivisionCommMonoid Ξ±] {a c : Ξ±}

@[to_additive]
protected lemma div_mul_cancel_left (h : IsUnit a) (b : α) : a / (a * b) = b⁻¹ := by
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/GroupPower/IterateHom.lean
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ assert_not_exists DenselyOrdered

open Function

variable {M : Type*} {N : Type*} {G : Type*} {H : Type*}
variable {M : Type*} {G : Type*} {H : Type*}

/-- An auxiliary lemma that can be used to prove `⇑(f ^ n) = ⇑f^[n]`. -/
theorem hom_coe_pow {F : Type*} [Monoid F] (c : F β†’ M β†’ M) (h1 : c 1 = id)
Expand Down
2 changes: 0 additions & 2 deletions Mathlib/Algebra/Order/Group/Prod.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@ import Mathlib.Algebra.Order.Monoid.Prod
-/


variable {Ξ± : Type*}

namespace Prod

variable {G H : Type*}
Expand Down
12 changes: 6 additions & 6 deletions Mathlib/Algebra/Order/Monovary.lean
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ variable {ΞΉ Ξ± Ξ² : Type*}
/-! ### Algebraic operations on monovarying functions -/

section OrderedCommGroup
variable [OrderedCommGroup Ξ±] [OrderedCommGroup Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±} {g g₁ gβ‚‚ : ΞΉ β†’ Ξ²}
variable [OrderedCommGroup Ξ±] [OrderedCommGroup Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±} {g : ΞΉ β†’ Ξ²}

@[to_additive (attr := simp)]
lemma monovaryOn_inv_left : MonovaryOn f⁻¹ g s ↔ AntivaryOn f g s := by
Expand Down Expand Up @@ -118,7 +118,7 @@ lemma Antivary.div_left (h₁ : Antivary f₁ g) (hβ‚‚ : Monovary fβ‚‚ g) : Anti
end OrderedCommGroup

section LinearOrderedCommGroup
variable [OrderedCommGroup Ξ±] [LinearOrderedCommGroup Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±}
variable [OrderedCommGroup Ξ±] [LinearOrderedCommGroup Ξ²] {s : Set ΞΉ} {f : ΞΉ β†’ Ξ±}
{g g₁ gβ‚‚ : ΞΉ β†’ Ξ²}

@[to_additive] lemma MonovaryOn.mul_right (h₁ : MonovaryOn f g₁ s) (hβ‚‚ : MonovaryOn f gβ‚‚ s) :
Expand Down Expand Up @@ -168,7 +168,7 @@ variable [OrderedCommGroup Ξ±] [LinearOrderedCommGroup Ξ²] {s : Set ΞΉ} {f f₁
end LinearOrderedCommGroup

section OrderedSemiring
variable [OrderedSemiring Ξ±] [OrderedSemiring Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±} {g g₁ gβ‚‚ : ΞΉ β†’ Ξ²}
variable [OrderedSemiring Ξ±] [OrderedSemiring Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±} {g : ΞΉ β†’ Ξ²}

lemma MonovaryOn.mul_leftβ‚€ (hf₁ : βˆ€ i ∈ s, 0 ≀ f₁ i) (hfβ‚‚ : βˆ€ i ∈ s, 0 ≀ fβ‚‚ i)
(h₁ : MonovaryOn f₁ g s) (hβ‚‚ : MonovaryOn fβ‚‚ g s) : MonovaryOn (f₁ * fβ‚‚) g s :=
Expand Down Expand Up @@ -201,7 +201,7 @@ lemma Antivary.pow_leftβ‚€ (hf : 0 ≀ f) (hfg : Antivary f g) (n : β„•) : Antiv
end OrderedSemiring

section LinearOrderedSemiring
variable [LinearOrderedSemiring Ξ±] [LinearOrderedSemiring Ξ²] {s : Set ΞΉ} {f f₁ fβ‚‚ : ΞΉ β†’ Ξ±}
variable [LinearOrderedSemiring Ξ±] [LinearOrderedSemiring Ξ²] {s : Set ΞΉ} {f : ΞΉ β†’ Ξ±}
{g g₁ gβ‚‚ : ΞΉ β†’ Ξ²}

lemma MonovaryOn.mul_rightβ‚€ (hg₁ : βˆ€ i ∈ s, 0 ≀ g₁ i) (hgβ‚‚ : βˆ€ i ∈ s, 0 ≀ gβ‚‚ i)
Expand Down Expand Up @@ -325,7 +325,7 @@ end LinearOrderedSemifield

section LinearOrderedAddCommGroup
variable [LinearOrderedRing Ξ±] [LinearOrderedAddCommGroup Ξ²] [Module Ξ± Ξ²]
[OrderedSMul Ξ± Ξ²] {f : ΞΉ β†’ Ξ±} {g : ΞΉ β†’ Ξ²} {s : Set ΞΉ} {a a₁ aβ‚‚ : Ξ±} {b b₁ bβ‚‚ : Ξ²}
[OrderedSMul Ξ± Ξ²] {f : ΞΉ β†’ Ξ±} {g : ΞΉ β†’ Ξ²} {s : Set ΞΉ}

lemma monovaryOn_iff_forall_smul_nonneg :
MonovaryOn f g s ↔ βˆ€ ⦃i⦄, i ∈ s β†’ βˆ€ ⦃j⦄, j ∈ s β†’ 0 ≀ (f j - f i) β€’ (g j - g i) := by
Expand Down Expand Up @@ -380,7 +380,7 @@ alias ⟨AntivaryOn.smul_add_smul_le_smul_add_smul, _⟩ := antivaryOn_iff_smul_
end LinearOrderedAddCommGroup

section LinearOrderedRing
variable [LinearOrderedRing Ξ±] {f g : ΞΉ β†’ Ξ±} {s : Set ΞΉ} {a b c d : Ξ±}
variable [LinearOrderedRing Ξ±] {f g : ΞΉ β†’ Ξ±} {s : Set ΞΉ}

lemma monovaryOn_iff_forall_mul_nonneg :
MonovaryOn f g s ↔ βˆ€ ⦃i⦄, i ∈ s β†’ βˆ€ ⦃j⦄, j ∈ s β†’ 0 ≀ (f j - f i) * (g j - g i) := by
Expand Down
7 changes: 0 additions & 7 deletions Mathlib/Algebra/Order/Ring/Unbundled/Nonneg.lean
Original file line number Diff line number Diff line change
Expand Up @@ -273,13 +273,6 @@ def coeRingHom : { x : Ξ± // 0 ≀ x } β†’+* Ξ± :=

end Semiring

section Nontrivial

variable [Semiring Ξ±] [PartialOrder Ξ±] [ZeroLEOneClass Ξ±] [NeZero 1]
[CovariantClass Ξ± Ξ± (Β· + Β·) (Β· ≀ Β·)] [PosMulMono Ξ±]

end Nontrivial

section CommSemiring

variable [CommSemiring Ξ±] [PartialOrder Ξ±] [ZeroLEOneClass Ξ±]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Algebra/Order/Ring/Unbundled/Rat.lean
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@ assert_not_exists GaloisConnection

namespace Rat

variable {a b c p q : β„š}
variable {a b p q : β„š}

@[simp] lemma divInt_nonneg_iff_of_pos_right {a b : β„€} (hb : 0 < b) : 0 ≀ a /. b ↔ 0 ≀ a := by
cases' hab : a /. b with n d hd hnd
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Ring/Hom/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,13 +21,13 @@ They could be moved to more natural homes.

open Function

variable {F Ξ± Ξ² Ξ³ : Type*}
variable {Ξ± Ξ² : Type*}

namespace RingHom

section

variable {_ : NonAssocSemiring Ξ±} {_ : NonAssocSemiring Ξ²} (f : Ξ± β†’+* Ξ²) {x y : Ξ±}
variable {_ : NonAssocSemiring Ξ±} {_ : NonAssocSemiring Ξ²} (f : Ξ± β†’+* Ξ²)

/-- `f : Ξ± β†’+* Ξ²` has a trivial codomain iff its range is `{0}`. -/
theorem codomain_trivial_iff_range_eq_singleton_zero : (0 : Ξ²) = 1 ↔ Set.range f = {0} :=
Expand Down
4 changes: 2 additions & 2 deletions Mathlib/Algebra/Ring/Parity.lean
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ assert_not_exists OrderedRing

open MulOpposite

variable {F Ξ± Ξ² R : Type*}
variable {F Ξ± Ξ² : Type*}

section Monoid
variable [Monoid Ξ±] [HasDistribNeg Ξ±] {n : β„•} {a : Ξ±}
Expand Down Expand Up @@ -156,7 +156,7 @@ lemma Odd.pow_add_pow_eq_zero [IsCancelAdd Ξ±] (hn : Odd n) (hab : a + b = 0) :
end Semiring

section Monoid
variable [Monoid Ξ±] [HasDistribNeg Ξ±] {a : Ξ±} {n : β„•}
variable [Monoid Ξ±] [HasDistribNeg Ξ±] {n : β„•}

lemma Odd.neg_pow : Odd n β†’ βˆ€ a : Ξ±, (-a) ^ n = -a ^ n := by
rintro ⟨c, rfl⟩ a; simp_rw [pow_add, pow_mul, neg_sq, pow_one, mul_neg]
Expand Down
2 changes: 1 addition & 1 deletion Mathlib/Analysis/BoxIntegral/Partition/Additive.lean
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ namespace BoxAdditiveMap

open Box Prepartition Finset

variable {N : Type*} [AddCommMonoid M] [AddCommMonoid N] {Iβ‚€ : WithTop (Box ΞΉ)} {I J : Box ΞΉ}
variable {N : Type*} [AddCommMonoid M] [AddCommMonoid N] {Iβ‚€ : WithTop (Box ΞΉ)} {I : Box ΞΉ}
{i : ΞΉ}

instance : FunLike (ΞΉ →ᡇᡃ[Iβ‚€] M) (Box ΞΉ) M where
Expand Down
3 changes: 1 addition & 2 deletions Mathlib/Analysis/Calculus/Deriv/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -97,7 +97,6 @@ open ContinuousLinearMap (smulRight smulRight_one_eq_iff)

variable {π•œ : Type u} [NontriviallyNormedField π•œ]
variable {F : Type v} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {E : Type w} [NormedAddCommGroup E] [NormedSpace π•œ E]

/-- `f` has the derivative `f'` at the point `x` as `x` goes along the filter `L`.
Expand Down Expand Up @@ -142,7 +141,7 @@ If the derivative exists (i.e., `βˆƒ f', HasDerivAt f f' x`), then
def deriv (f : π•œ β†’ F) (x : π•œ) :=
fderiv π•œ f x 1

variable {f fβ‚€ f₁ g : π•œ β†’ F}
variable {f fβ‚€ f₁ : π•œ β†’ F}
variable {f' fβ‚€' f₁' g' : F}
variable {x : π•œ}
variable {s t : Set π•œ}
Expand Down
12 changes: 6 additions & 6 deletions Mathlib/Analysis/Calculus/Deriv/Comp.lean
Original file line number Diff line number Diff line change
Expand Up @@ -43,11 +43,11 @@ open ContinuousLinearMap (smulRight smulRight_one_eq_iff)
variable {π•œ : Type u} [NontriviallyNormedField π•œ]
variable {F : Type v} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {E : Type w} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {f fβ‚€ f₁ g : π•œ β†’ F}
variable {f' fβ‚€' f₁' g' : F}
variable {f : π•œ β†’ F}
variable {f' : F}
variable {x : π•œ}
variable {s t : Set π•œ}
variable {L L₁ Lβ‚‚ : Filter π•œ}
variable {s : Set π•œ}
variable {L : Filter π•œ}

section Composition

Expand All @@ -65,8 +65,8 @@ usual multiplication in `comp` lemmas.
/- For composition lemmas, we put x explicit to help the elaborator, as otherwise Lean tends to
get confused since there are too many possibilities for composition -/
variable {π•œ' : Type*} [NontriviallyNormedField π•œ'] [NormedAlgebra π•œ π•œ'] [NormedSpace π•œ' F]
[IsScalarTower π•œ π•œ' F] {s' t' : Set π•œ'} {h : π•œ β†’ π•œ'} {h₁ : π•œ β†’ π•œ} {hβ‚‚ : π•œ' β†’ π•œ'} {h' hβ‚‚' : π•œ'}
{h₁' : π•œ} {g₁ : π•œ' β†’ F} {g₁' : F} {L' : Filter π•œ'} {y : π•œ'} (x)
[IsScalarTower π•œ π•œ' F] {s' t' : Set π•œ'} {h : π•œ β†’ π•œ'} {hβ‚‚ : π•œ' β†’ π•œ'} {h' hβ‚‚' : π•œ'}
{g₁ : π•œ' β†’ F} {g₁' : F} {L' : Filter π•œ'} {y : π•œ'} (x)

theorem HasDerivAtFilter.scomp (hg : HasDerivAtFilter g₁ g₁' (h x) L')
(hh : HasDerivAtFilter h h' x L) (hL : Tendsto h L L') :
Expand Down
17 changes: 5 additions & 12 deletions Mathlib/Analysis/Calculus/Deriv/Inv.lean
Original file line number Diff line number Diff line change
Expand Up @@ -21,21 +21,14 @@ derivative
-/


universe u v w
universe u

open scoped Classical Topology ENNReal
open scoped Topology
open Filter Asymptotics Set

open ContinuousLinearMap (smulRight smulRight_one_eq_iff)
open ContinuousLinearMap (smulRight)

variable {π•œ : Type u} [NontriviallyNormedField π•œ]
variable {F : Type v} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {E : Type w} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {f fβ‚€ f₁ g : π•œ β†’ F}
variable {f' fβ‚€' f₁' g' : F}
variable {x : π•œ}
variable {s t : Set π•œ}
variable {L : Filter π•œ}
variable {π•œ : Type u} [NontriviallyNormedField π•œ] {x : π•œ} {s : Set π•œ}

section Inverse

Expand Down Expand Up @@ -101,7 +94,7 @@ theorem fderivWithin_inv (x_ne_zero : x β‰  0) (hxs : UniqueDiffWithinAt π•œ s
rw [DifferentiableAt.fderivWithin (differentiableAt_inv x_ne_zero) hxs]
exact fderiv_inv

variable {c : π•œ β†’ π•œ} {h : E β†’ π•œ} {c' : π•œ} {z : E} {S : Set E}
variable {c : π•œ β†’ π•œ} {c' : π•œ}

theorem HasDerivWithinAt.inv (hc : HasDerivWithinAt c c' s x) (hx : c x β‰  0) :
HasDerivWithinAt (fun y => (c y)⁻¹) (-c' / c x ^ 2) s x := by
Expand Down
16 changes: 4 additions & 12 deletions Mathlib/Analysis/Calculus/Deriv/Polynomial.lean
Original file line number Diff line number Diff line change
Expand Up @@ -28,21 +28,13 @@ derivative, polynomial
-/


universe u v w
universe u

open scoped Topology Filter ENNReal Polynomial
open Set
open scoped Polynomial

open ContinuousLinearMap (smulRight smulRight_one_eq_iff)
open ContinuousLinearMap (smulRight)

variable {π•œ : Type u} [NontriviallyNormedField π•œ]
variable {F : Type v} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {E : Type w} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {f fβ‚€ f₁ g : π•œ β†’ F}
variable {f' fβ‚€' f₁' g' : F}
variable {x : π•œ}
variable {s t : Set π•œ}
variable {L L₁ Lβ‚‚ : Filter π•œ}
variable {π•œ : Type u} [NontriviallyNormedField π•œ] {x : π•œ} {s : Set π•œ}

namespace Polynomial

Expand Down
16 changes: 2 additions & 14 deletions Mathlib/Analysis/Calculus/Deriv/Pow.lean
Original file line number Diff line number Diff line change
Expand Up @@ -19,21 +19,9 @@ For a more detailed overview of one-dimensional derivatives in mathlib, see the
derivative, power
-/

universe u v w
universe u

open scoped Classical
open Topology Filter ENNReal

open Filter Asymptotics Set

variable {π•œ : Type u} [NontriviallyNormedField π•œ]
variable {F : Type v} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {E : Type w} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {f fβ‚€ f₁ g : π•œ β†’ F}
variable {f' fβ‚€' f₁' g' : F}
variable {x : π•œ}
variable {s t : Set π•œ}
variable {L L₁ Lβ‚‚ : Filter π•œ}
variable {π•œ : Type u} [NontriviallyNormedField π•œ] {x : π•œ} {s : Set π•œ}

/-! ### Derivative of `x ↦ x^n` for `n : β„•` -/

Expand Down
10 changes: 1 addition & 9 deletions Mathlib/Analysis/Calculus/FDeriv/Bilinear.lean
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,7 @@ bounded bilinear maps.
-/


open Filter Asymptotics ContinuousLinearMap Set Metric
open scoped Classical
open Topology NNReal Asymptotics ENNReal
open Asymptotics Topology

noncomputable section

Expand All @@ -29,12 +27,6 @@ variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
variable {f fβ‚€ f₁ g : E β†’ F}
variable {f' fβ‚€' f₁' g' : E β†’L[π•œ] F}
variable (e : E β†’L[π•œ] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ Lβ‚‚ : Filter E}

section BilinearMap

Expand Down
16 changes: 4 additions & 12 deletions Mathlib/Analysis/Calculus/FDeriv/Linear.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,26 +17,18 @@ bounded linear maps.
-/


open Filter Asymptotics ContinuousLinearMap Set Metric

open scoped Classical
open Topology NNReal Filter Asymptotics ENNReal

noncomputable section
open Asymptotics

section

variable {π•œ : Type*} [NontriviallyNormedField π•œ]
variable {E : Type*} [NormedAddCommGroup E] [NormedSpace π•œ E]
variable {F : Type*} [NormedAddCommGroup F] [NormedSpace π•œ F]
variable {G : Type*} [NormedAddCommGroup G] [NormedSpace π•œ G]
variable {G' : Type*} [NormedAddCommGroup G'] [NormedSpace π•œ G']
variable {f fβ‚€ f₁ g : E β†’ F}
variable {f' fβ‚€' f₁' g' : E β†’L[π•œ] F}
variable {f : E β†’ F}
variable (e : E β†’L[π•œ] F)
variable {x : E}
variable {s t : Set E}
variable {L L₁ Lβ‚‚ : Filter E}
variable {s : Set E}
variable {L : Filter E}

section ContinuousLinearMap

Expand Down
14 changes: 6 additions & 8 deletions Mathlib/Analysis/Convex/EGauge.lean
Original file line number Diff line number Diff line change
Expand Up @@ -65,8 +65,7 @@ end SMul

section SMulZero

variable (π•œ : Type*) [NNNorm π•œ] [Nonempty π•œ] {E : Type*} [Zero E] [SMulZeroClass π•œ E]
{c : π•œ} {s t : Set E} {x : E} {r : ℝβ‰₯0∞}
variable (π•œ : Type*) [NNNorm π•œ] [Nonempty π•œ] {E : Type*} [Zero E] [SMulZeroClass π•œ E] {x : E}

@[simp] lemma egauge_zero_left_eq_top : egauge π•œ 0 x = ∞ ↔ x β‰  0 := by
simp [egauge_eq_top]
Expand All @@ -77,8 +76,8 @@ end SMulZero

section Module

variable {π•œ : Type*} [NormedDivisionRing π•œ] {Ξ± E : Type*} [AddCommGroup E] [Module π•œ E]
{c : π•œ} {s t : Set E} {x y : E} {r : ℝβ‰₯0∞}
variable {π•œ : Type*} [NormedDivisionRing π•œ] {E : Type*} [AddCommGroup E] [Module π•œ E]
{c : π•œ} {s : Set E} {x : E}

/-- If `c β€’ x ∈ s` and `c β‰  0`, then `egauge π•œ s x` is at most `((β€–cβ€–β‚Šβ»ΒΉ : ℝβ‰₯0) : ℝβ‰₯0∞).
Expand Down Expand Up @@ -159,8 +158,7 @@ end Module

section SeminormedAddCommGroup

variable (π•œ : Type*) [NormedField π•œ] {Ξ± E : Type*}
[SeminormedAddCommGroup E] [NormedSpace π•œ E] {c : π•œ} {s t : Set E} {x y : E}
variable (π•œ : Type*) [NormedField π•œ] {E : Type*} [SeminormedAddCommGroup E] [NormedSpace π•œ E]

lemma div_le_egauge_closedBall (r : ℝβ‰₯0) (x : E) : β€–xβ€–β‚Š / r ≀ egauge π•œ (closedBall 0 r) x := by
rw [le_egauge_iff]
Expand All @@ -183,8 +181,8 @@ end SeminormedAddCommGroup

section SeminormedAddCommGroup

variable {π•œ : Type*} [NormedField π•œ] {Ξ± E : Type*}
[NormedAddCommGroup E] [NormedSpace π•œ E] {c : π•œ} {s t : Set E} {x y : E} {r : ℝβ‰₯0}
variable {π•œ : Type*} [NormedField π•œ] {E : Type*}
[NormedAddCommGroup E] [NormedSpace π•œ E] {c : π•œ} {x : E} {r : ℝβ‰₯0}

lemma egauge_ball_le_of_one_lt_norm (hc : 1 < β€–cβ€–) (hβ‚€ : r β‰  0 ∨ x β‰  0) :
egauge π•œ (ball 0 r) x ≀ β€–cβ€–β‚Š * β€–xβ€–β‚Š / r := by
Expand Down
Loading

0 comments on commit 2de7871

Please sign in to comment.