Skip to content

Commit

Permalink
style fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
arulandu committed Oct 3, 2024
1 parent f67bf07 commit 1e7c736
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 7 deletions.
2 changes: 1 addition & 1 deletion Mathlib/MeasureTheory/Function/L1Space.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1146,7 +1146,7 @@ theorem Integrable.im (hf : Integrable f μ) : Integrable (fun x => RCLike.im (f
exact hf.im

lemma Integrable.iff_ofReal {f : α → ℝ} : Integrable f μ ↔ Integrable (fun x ↦ (f x : ℂ)) μ :=
fun hf ↦ hf.ofReal, fun hf ↦ hf.re⟩
fun hf ↦ hf.ofReal, fun hf ↦ hf.re⟩

end RCLike

Expand Down
4 changes: 2 additions & 2 deletions Mathlib/MeasureTheory/Integral/IntegrableOn.lean
Original file line number Diff line number Diff line change
Expand Up @@ -700,7 +700,7 @@ namespace MeasureTheory
variable {X : Type*} [MeasurableSpace X] {𝕜 : Type*} [RCLike 𝕜] {μ : Measure X} {s : Set X}
theorem IntegrableOn.iff_ofReal {f : X → ℝ} :
IntegrableOn f s μ ↔ IntegrableOn (fun x ↦ (f x : ℂ)) s μ :=
MeasureTheory.Integrable.iff_ofReal
MeasureTheory.Integrable.iff_ofReal

theorem IntegrableOn.ofReal {f : X → ℝ} (hf : IntegrableOn f s μ) :
IntegrableOn (fun x => (f x : 𝕜)) s μ := by
Expand All @@ -712,7 +712,7 @@ theorem IntegrableOn.re_im_iff {f : X → 𝕜} :
IntegrableOn f s μ := Integrable.re_im_iff (f := f)

theorem IntegrableOn.re {f : X → 𝕜} (hf : IntegrableOn f s μ) :
IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left
IntegrableOn (fun x => RCLike.re (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).left

theorem IntegrableOn.im {f : X → 𝕜} (hf : IntegrableOn f s μ) :
IntegrableOn (fun x => RCLike.im (f x)) s μ := (IntegrableOn.re_im_iff.2 hf).right
Expand Down
8 changes: 4 additions & 4 deletions Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
Original file line number Diff line number Diff line change
Expand Up @@ -602,10 +602,10 @@ nonrec theorem integral_ofReal {a b : ℝ} {μ : Measure ℝ} {f : ℝ → ℝ}
theorem intervalIntegral_re {μ : Measure ℝ} {a b : ℝ} {f : ℝ → ℂ} (hab: a ≤ b)
(hf: IntervalIntegrable f μ a b) :
(∫ x in (a)..b, (f x).re ∂μ) = (∫ x in (a)..b, f x ∂μ).re := by
repeat rw [intervalIntegral.integral_of_le hab]
apply setIntegral_re
rw [← intervalIntegrable_iff_integrableOn_Ioc_of_le hab]
exact hf
repeat rw [intervalIntegral.integral_of_le hab]
apply setIntegral_re
rw [← intervalIntegrable_iff_integrableOn_Ioc_of_le hab]
exact hf

section ContinuousLinearMap

Expand Down

0 comments on commit 1e7c736

Please sign in to comment.