Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Polynomial: differentiate & print methods. #929

Merged
merged 5 commits into from
Oct 23, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 75 additions & 3 deletions math/src/polynomial/mod.rs
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
use super::field::element::FieldElement;
use crate::field::traits::{IsField, IsSubFieldOf};
use alloc::{borrow::ToOwned, vec, vec::Vec};
use crate::field::traits::{IsField, IsPrimeField, IsSubFieldOf};
use alloc::string::{String, ToString};
use alloc::{borrow::ToOwned, format, vec, vec::Vec};
use core::{fmt::Display, ops};

pub mod dense_multilinear_poly;
mod error;
pub mod sparse_multilinear_poly;
Expand Down Expand Up @@ -140,6 +140,19 @@ impl<F: IsField> Polynomial<FieldElement<F>> {
self.coefficients().len()
}

/// Returns the derivative of the polynomial with respect to x.
pub fn differentiate(&self) -> Self {
let degree = self.degree();
if degree == 0 {
return Polynomial::zero();
}
let mut derivative = Vec::with_capacity(degree);
for (i, coeff) in self.coefficients().iter().enumerate().skip(1) {
derivative.push(FieldElement::<F>::from(i as u64) * coeff);
}
Polynomial::new(&derivative)
}

/// Computes quotient with `x - b` in place.
pub fn ruffini_division_inplace(&mut self, b: &FieldElement<F>) {
let mut c = FieldElement::zero();
Expand Down Expand Up @@ -302,6 +315,44 @@ impl<F: IsField> Polynomial<FieldElement<F>> {
}
}

impl<F: IsPrimeField> Polynomial<FieldElement<F>> {
// Print the polynomial as a string ready to be used in SageMath, or just for pretty printing.
pub fn print_as_sage_poly(&self, var_name: Option<char>) -> String {
let var_name = var_name.unwrap_or('x');
if self.coefficients.is_empty()
|| self.coefficients.len() == 1 && self.coefficients[0] == FieldElement::zero()
{
return String::new();
}

let mut string = String::new();
let zero = FieldElement::<F>::zero();

for (i, coeff) in self.coefficients.iter().rev().enumerate() {
if *coeff == zero {
continue;
}

let coeff_str = coeff.representative().to_string();

if i == self.coefficients.len() - 1 {
string.push_str(&coeff_str);
} else if i == self.coefficients.len() - 2 {
string.push_str(&format!("{}*{} + ", coeff_str, var_name));
} else {
string.push_str(&format!(
"{}*{}^{} + ",
coeff_str,
var_name,
self.coefficients.len() - 1 - i
));
}
}

string
}
}

pub fn pad_with_zero_coefficients_to_length<F: IsField>(
pa: &mut Polynomial<FieldElement<F>>,
n: usize,
Expand Down Expand Up @@ -1177,4 +1228,25 @@ mod tests {
assert_eq!(lhs, g);
assert_eq!(g, p3);
}

#[test]
fn test_differentiate() {
// 3x^2 + 2x + 42
let px = Polynomial::new(&[FE::new(42), FE::new(2), FE::new(3)]);
// 6x + 2
let dpdx = px.differentiate();
assert_eq!(dpdx, Polynomial::new(&[FE::new(2), FE::new(6)]));

// 128
let px = Polynomial::new(&[FE::new(128)]);
// 0
let dpdx = px.differentiate();
assert_eq!(dpdx, Polynomial::new(&[FE::new(0)]));
}

#[test]
fn test_print_as_sage_poly() {
let p = Polynomial::new(&[FE::new(1), FE::new(2), FE::new(3)]);
assert_eq!(p.print_as_sage_poly(None), "3*x^2 + 2*x + 1");
}
}
Loading