-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
355 additions
and
52 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,179 @@ | ||
!------------------------------------------------------------! | ||
! This file is distributed as part of the cpw2000 code and ! | ||
! under the terms of the GNU General Public License. See the ! | ||
! file `LICENSE' in the root directory of the cpw2000 ! | ||
! distribution, or http://www.gnu.org/copyleft/gpl.txt ! | ||
! ! | ||
! The webpage of the cpw2000 code is not yet written ! | ||
! ! | ||
! The cpw2000 code is hosted on GitHub: ! | ||
! ! | ||
! https://github.com/jlm785/cpw2000 ! | ||
!------------------------------------------------------------! | ||
|
||
!> Generates a set reciprocal space directions for the alcagoita representation | ||
!> representation of effective masses. Based on a octahedral | ||
!> | ||
!> \author Jose Luis Martins | ||
!> \version 5.10 | ||
!> \date 20 December 2023. | ||
!> \copyright GNU Public License v2 | ||
|
||
subroutine berry_mass_directions(nlin, adot, npoint, xpoint) | ||
|
||
|
||
implicit none | ||
|
||
integer, parameter :: REAL64 = selected_real_kind(12) | ||
|
||
! input | ||
|
||
integer, intent(in) :: nlin !< number of points in the octahedron edge. | ||
real(REAL64), intent(in) :: adot(3,3) !< metric in direct space | ||
|
||
! output | ||
|
||
integer, intent(out) :: npoint !< number of points generated | ||
real(REAL64), intent(out) :: xpoint(3,4*nlin*nlin) !< directions as points on unit sphere | ||
|
||
! local variables | ||
|
||
integer :: ivert(3,6) ! octahedron vertices | ||
integer :: iedge(2,12) ! octahedron edges | ||
integer :: iface(3,8) ! octahedron faces | ||
|
||
real(REAL64) :: xx, yy | ||
real(REAL64) :: avec(3,3), bvec(3,3) | ||
real(REAL64) :: xk(3) | ||
|
||
! constants | ||
|
||
real(REAL64) :: UM = 1.0_REAL64, ZERO = 0.0_REAL64 | ||
|
||
! counters | ||
|
||
integer :: i, j, k, m, icount | ||
|
||
|
||
if(nlin < 3) then | ||
write(6,*) | ||
write(6,*) ' Stopped in berry_mass_directions' | ||
write(6,*) ' nlin does not make sense ',nlin | ||
write(6,*) | ||
|
||
stop | ||
|
||
endif | ||
|
||
ivert(:,:) = 0 | ||
do i = 1,3 | ||
ivert(i,i) = 1 | ||
ivert(i,i+3) = -1 | ||
enddo | ||
|
||
icount = 0 | ||
do j = 1,5 | ||
do k = j+1,6 | ||
if(ivert(1,j) + ivert(1,k) /=0 .or. ivert(2,j) + ivert(2,k) /=0 .or. & | ||
ivert(3,j) + ivert(3,k) /=0) then | ||
icount = icount + 1 | ||
iedge(1,icount) = j | ||
iedge(2,icount) = k | ||
endif | ||
enddo | ||
enddo | ||
|
||
icount = 0 | ||
do i = 1,4 | ||
do j = i+1,5 | ||
if(ivert(1,i) + ivert(1,j) /=0 .or. ivert(2,i) + ivert(2,j) /=0 .or. & | ||
ivert(3,i) + ivert(3,j) /=0) then | ||
do k = j+1,6 | ||
if((ivert(1,j) + ivert(1,k) /=0 .or. ivert(2,j) + ivert(2,k) /=0 .or. & | ||
ivert(3,j) + ivert(3,k) /=0) .and. & | ||
(ivert(1,i) + ivert(1,k) /=0 .or. ivert(2,i) + ivert(2,k) /=0 .or. & | ||
ivert(3,i) + ivert(3,k) /=0)) then | ||
icount = icount + 1 | ||
iface(1,icount) = i | ||
iface(2,icount) = j | ||
iface(3,icount) = k | ||
endif | ||
enddo | ||
endif | ||
enddo | ||
enddo | ||
|
||
! vertices | ||
|
||
do i = 1,6 | ||
do j = 1,3 | ||
xpoint(j,i) = UM*ivert(j,i) | ||
enddo | ||
enddo | ||
|
||
icount = 6 | ||
|
||
! edges | ||
|
||
do i = 1,12 | ||
do k = 1,nlin-2 | ||
xx = (UM*k) / (UM*(nlin-1)) | ||
icount = icount+1 | ||
do j = 1,3 | ||
xpoint(j,icount) = xx*ivert(j,iedge(1,i)) + (UM-xx)*ivert(j,iedge(2,i)) | ||
enddo | ||
enddo | ||
enddo | ||
|
||
! faces | ||
|
||
if(nlin > 3) then | ||
do i = 1,8 | ||
do k = 1,nlin-3 | ||
if(nlin-2-k > 0) then | ||
do m = 1,nlin-2-k | ||
xx = (UM*k) / (UM*(nlin-1)) | ||
yy = (UM*m) / (UM*(nlin-1)) | ||
icount = icount+1 | ||
do j = 1,3 | ||
xpoint(j,icount) = xx*ivert(j,iface(1,i)) + yy*ivert(j,iface(2,i)) + & | ||
(UM-xx-yy)*ivert(j,iface(3,i)) | ||
enddo | ||
enddo | ||
endif | ||
enddo | ||
enddo | ||
endif | ||
|
||
npoint = icount | ||
|
||
! points on a sphere | ||
|
||
do i =1,npoint | ||
xx = xpoint(1,i)*xpoint(1,i) + xpoint(2,i)*xpoint(2,i)+ xpoint(3,i)*xpoint(3,i) | ||
xx = UM / sqrt(xx) | ||
do j = 1,3 | ||
xpoint(j,i) = xx*xpoint(j,i) | ||
enddo | ||
enddo | ||
|
||
! converts to lattice coordinates | ||
|
||
call adot_to_avec_sym(adot,avec,bvec) | ||
|
||
do i = 1,npoint | ||
do j = 1,3 | ||
xk(j) = ZERO | ||
do k = 1,3 | ||
xk(j) = xk(j) + xpoint(k,i)*avec(k,j) | ||
enddo | ||
enddo | ||
do j = 1,3 | ||
xpoint(j,i) = xk(j) | ||
enddo | ||
enddo | ||
|
||
|
||
return | ||
|
||
end subroutine berry_mass_directions |
Oops, something went wrong.