Code acompaining paper: HIGAN - Cosmic neutral hydrogen with Generative Adversarial Networks
- PyTorch 0.4.1
- h5py
- Clone this repo to your local machine using:
git clone https://github.com/jjzamudio/HIGAN.git
To run WGAN in 3D (within wgan folder):
python main.py [--datapath ] [--n_samples] [--experiment] [--fixed]
Arguments:
--datapath Path to data
--n_samples Number of samples per epoch
--experiment Directory to save outpus
--fixed Use fixed samples or sample directly from cube
Optional arguments:
--workers Number of data loading workers (default=0)
--batchSize Input batch size (default=32)
--epoch_st Number of epoch to start (if continuing training, default=0)
--load_weights Load weights to continue training (used if epoch_st>0)
--load_opt Load optimizers to continue training (used if epoch_st>0)
--nz Size of latent vector (default=100)
--ngf Number of channels for generator (multiple of 16, default=64)
--ndf Number of channels for discriminator (multiple of 16, default=64)
--niter Number of epochs to train (default=25)
--lrD Learning rate for Discriminator (ADAM, default=.0005)
--lrG Learning rate for Generator (ADAM, default=.0005)
--lrdecay Use learning rate decay every 1' epochs (default=False)
--beta1 Beta1 for adam (default=0.5)
--beta2 Beta2 for adam (default=0.9)
--cuda Use Cuda during training
--ngpu Number of GPUs (if cuda==True, default=1)
--lambda_ Parameter for gradient penalty (default=10)
--Diters Number of Discriminator iterations per Generator iterations (default=5)
--transform Type of data transformation
--MLP Use MLPs instead of convolutional architecture