-
Notifications
You must be signed in to change notification settings - Fork 1.5k
Legacy target Omnibus F3
This board is not supported in recent INAV releases
Refer to the product web page: OMNIBUS AIO F3 Flight Control
There are few things to note on how things are connected on the board.
-
VBAT (J4) This is a battery input to the board, and is also a input to voltage sensor.
-
J11 Power distribution The RAM is user defined power rail, and all RAM through holes (J6, J7 and J11) are connected together. By connecting 5V or VBAT to RAM at J11, the RAM becomes 5V or VBAT power rail respectively. The VBAT on J11 can also be used to power the Board if necessary.
-
RSSI (J4) The pin is labelled as RSSI, but it will not be used for RSSI input for a hardware configuration limitation. In this document, the "RSSI" is used to indicate the pin location, not the function.
-
UART1 in boot-loader/DFU mode The UART1 is scanned during boot-loader/DFU mode, together with USB for possible interaction with a host PC. It is observed that devices that autonomously transmits some data, such as GPS, will prevent the MCU to talk to the USB. It is advised not to connect or disconnect such devices to/from UART1. UART2 is safe from this catch.
The first support for the OMNIBUS F3 appeared in BetaFlight. The OMNIBUS target in INAV has different configuration from the BetaFlight support, to maximize the hardware resource utilization for navigation oriented use cases.
[PIN CONFIGURATION PIC HERE]
Six PWM outputs (PWM1~PWM6) are supported, but PWM5 and PWM6 is not available when UART3 is in use. PWM7 and PWM8 are dedicated for I2C; in this document, they are used to indicate the pin location, not the function.
If servos are used on a multirotor mixer (i.e. Tricopter) PWM1 is remapped to servo and motor 1 is moved to PWM2 etc.
Note: Tested only for QUAD-X configuration.
PPM/SBUS jumper for J8 is assumed to be configured for PPM (SBUS=R18 removed). With newer boards (the 1.1 Version) you don't have to swap an smd resistor to use SBUS anymore. It just works out of the box.
UART | Location | Note |
---|---|---|
UART1 | J13 | |
UART2 | J12 | |
UART3 | J22 | PWM5=TX3,PWM6=RX3 |
All UARTs are Serial RX capable.
I2C is available on J22 PWM7 and PWM8
signal | Location | Alt. Location |
---|---|---|
SCL | J22 (PWM8) | J3 (SCL) |
SDA | J22 (PWM7) | J3 (SDA) |
HC-SR04 rangefinder is supported when NOT using PPM.
signal | Location |
---|---|
TRIG | J8 (PPM) |
ECHO | J4 (RSSI) |
5V rangefinder can be connected directly without inline resistors.
Integrated OSD is supported.
The RSSI sensor adc is not supported due to the hardware configuration limitation.
Due to the way INAV handles PWM outputs the first 2 PWM outputs are reserved for the motor outputs. When using SBUS on UART3 as recommended this leaves only 2 additional outputs for the servos, as output 5 and 6 are blocked by UART3 serial for SBUS and 7 and 8 are used for I2C.
You can free PWM outputs 5 and 6 by simply connecting SBUS up to UART1. For FrSky there is no hardware inverter needed as the F3 chip UARTs can handle this without additional hardware. Just make sure that sbus_inversion = ON
is set. However, you will not be able to use UART3, e.G. for telemetry.
This allows to control a standard airplane with rudder, ailerons and elevator. If you use flaps or a servo gimbal, you can bypass the FC by connecting it up to the receiver directly.
INAV Version Release Notes
7.1.0 Release Notes
7.0.0 Release Notes
6.0.0 Release Notes
5.1 Release notes
5.0.0 Release Notes
4.1.0 Release Notes
4.0.0 Release Notes
3.0.0 Release Notes
2.6.0 Release Notes
2.5.1 Release notes
2.5.0 Release Notes
2.4.0 Release Notes
2.3.0 Release Notes
2.2.1 Release Notes
2.2.0 Release Notes
2.1.0 Release Notes
2.0.0 Release Notes
1.9.1 Release notes
1.9.0 Release notes
1.8.0 Release notes
1.7.3 Release notes
Older Release Notes
QUICK START GUIDES
Getting started with iNav
Fixed Wing Guide
Howto: CC3D flight controller, minimOSD , telemetry and GPS for fixed wing
Howto: CC3D flight controller, minimOSD, GPS and LTM telemetry for fixed wing
INAV for BetaFlight users
launch mode
Multirotor guide
YouTube video guides
DevDocs Getting Started.md
DevDocs INAV_Fixed_Wing_Setup_Guide.pdf
DevDocs Safety.md
Connecting to INAV
Bluetooth setup to configure your flight controller
DevDocs Wireless Connections (BLE, TCP and UDP).md\
Flashing and Upgrading
Boards, Targets and PWM allocations
Upgrading from an older version of INAV to the current version
DevDocs Installation.md
DevDocs USB Flashing.md
Setup Tab
Live 3D Graphic & Pre-Arming Checks
Calibration Tab
Accelerometer, Compass, & Optic Flow Calibration
Alignment Tool Tab
Adjust mount angle of FC & Compass
Ports Tab
Map Devices to UART Serial Ports
Receiver Tab
Set protocol and channel mapping
Mixer
Outputs
DevDocs ESC and servo outputs.md
DevDocs Servo.md
Modes
Modes
Navigation modes
Navigation Mode: Return to Home
DevDocs Controls.md
DevDocs INAV_Modes.pdf
DevDocs Navigation.md
Configuration
Failsafe
Failsafe
DevDocs Failsafe.md
PID Tuning
PID Attenuation and scaling
Fixed Wing Tuning for INAV 3.0
Tune INAV PIFF controller for fixedwing
DevDocs Autotune - fixedwing.md
DevDocs INAV PID Controller.md
DevDocs INAV_Wing_Tuning_Masterclass.pdf
DevDocs PID tuning.md
DevDocs Profiles.md
OSD and VTx
DevDocs Betaflight 4.3 compatible OSD.md
OSD custom messages
OSD Hud and ESP32 radars
DevDocs OSD.md
DevDocs VTx.md
LED Strip
DevDocs LedStrip.md
Advanced Tuning
Programming
DevDocs Programming Framework.md
Adjustments
DevDocs Inflight Adjustments.md
Mission Control
iNavFlight Missions
DevDocs Safehomes.md
Tethered Logging
Log when FC is connected via USB
Blackbox
DevDocs Blackbox.md
INAV blackbox variables
DevDocs USB_Mass_Storage_(MSC)_mode.md
CLI
iNav CLI variables
DevDocs Cli.md
DevDocs Settings.md
VTOL
DevDocs MixerProfile.md
DevDocs VTOL.md
TROUBLESHOOTING
"Something" is disabled Reasons
Blinkenlights
Pixel OSD FAQs
TROUBLESHOOTING
Why do I have limited servo throw in my airplane
ADTL TOPICS, FEATURES, DEV INFO
AAT Automatic Antenna Tracker
Building custom firmware
Default values for different type of aircrafts
Features safe to add and remove to fit your needs.
Developer info
INAV MSP frames changelog
INAV Remote Management, Control and Telemetry
Lightweight Telemetry (LTM)
Making a new Virtualbox to make your own INAV
MSP Navigation Messages
MSP V2
OrangeRX LRS RX and OMNIBUS F4
Rate Dynamics
Target and Sensor support
UAV Interconnect Bus
Ublox 3.01 firmware and Galileo
DevDocs 1wire.md
DevDocs ADSB.md
DevDocs Battery.md
DevDocs Buzzer.md
DevDocs Channel forwarding.md
DevDocs Display.md
DevDocs Fixed Wing Landing.md
DevDocs GPS_fix_estimation.md
DevDocs LED pin PWM.md
DevDocs Lights.md
DevDocs OSD Joystick.md
DevDocs Servo Gimbal.md
DevDocs Temperature sensors.md
OLD LEGACY INFO
Supported boards
DevDocs Boards.md
Legacy Mixers
Legacy target ChebuzzF3
Legacy target Colibri RACE
Legacy target Motolab
Legacy target Omnibus F3
Legacy target Paris Air Hero 32
Legacy target Paris Air Hero 32 F3
Legacy target Sparky
Legacy target SPRacingF3
Legacy target SPRacingF3EVO
Legacy target SPRacingF3EVO_1SS
DevDocs Configuration.md
Request form new PRESET
DevDocs Introduction.md
Welcome to INAV, useful links and products
iNav Telemetry
DevDocs Rangefinder.md
DevDocs Rssi.md
DevDocs Runcam device.md
DevDocs Serial.md
DevDocs Telemetry.md
DevDocs Rx.md
DevDocs Spektrum bind.md