Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for anchoring with an ERC20 contract with deposit and withdraw #24

Merged
merged 10 commits into from
Aug 1, 2024
40 changes: 40 additions & 0 deletions solidity/contracts/erc20.sol
Original file line number Diff line number Diff line change
@@ -0,0 +1,40 @@
// Copyright © 2024 Kaleido, Inc.
//
// SPDX-License-Identifier: Apache-2.0
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
pragma solidity ^0.8.20;

import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "hardhat/console.sol";

/// @title A sample implementation of a Zeto based fungible token with anonymity and no encryption
/// @author Kaleido, Inc.
/// @dev The proof has the following statements:
/// - each value in the output commitments must be a positive number in the range 0 ~ (2^40 - 1)
/// - the sum of the input values match the sum of output values
/// - the hashes in the input and output match the `hash(value, salt, owner public key)` formula
/// - the sender possesses the private BabyJubjub key, whose public key is part of the pre-image of the input commitment hashes
contract SampleERC20 is ERC20, Ownable {
constructor()
ERC20("Sample ERC20 token", "SampleERC20")
Ownable(msg.sender)
{
_mint(msg.sender, 1000000 * 10 ** 18);
}

function mint(address to, uint256 amount) public onlyOwner {
_mint(to, amount);
}
}
177 changes: 177 additions & 0 deletions solidity/contracts/lib/verifier_check_hashes_value.sol
Original file line number Diff line number Diff line change
@@ -0,0 +1,177 @@
// SPDX-License-Identifier: GPL-3.0
/*
Copyright 2021 0KIMS association.

This file is generated with [snarkJS](https://github.com/iden3/snarkjs).

snarkJS is a free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

snarkJS is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License
along with snarkJS. If not, see <https://www.gnu.org/licenses/>.
*/

pragma solidity >=0.7.0 <0.9.0;

contract Groth16Verifier_CheckValue {
// Scalar field size
uint256 constant r = 21888242871839275222246405745257275088548364400416034343698204186575808495617;
// Base field size
uint256 constant q = 21888242871839275222246405745257275088696311157297823662689037894645226208583;

// Verification Key data
uint256 constant alphax = 20491192805390485299153009773594534940189261866228447918068658471970481763042;
uint256 constant alphay = 9383485363053290200918347156157836566562967994039712273449902621266178545958;
uint256 constant betax1 = 4252822878758300859123897981450591353533073413197771768651442665752259397132;
uint256 constant betax2 = 6375614351688725206403948262868962793625744043794305715222011528459656738731;
uint256 constant betay1 = 21847035105528745403288232691147584728191162732299865338377159692350059136679;
uint256 constant betay2 = 10505242626370262277552901082094356697409835680220590971873171140371331206856;
uint256 constant gammax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant gammax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant gammay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant gammay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;
uint256 constant deltax1 = 11559732032986387107991004021392285783925812861821192530917403151452391805634;
uint256 constant deltax2 = 10857046999023057135944570762232829481370756359578518086990519993285655852781;
uint256 constant deltay1 = 4082367875863433681332203403145435568316851327593401208105741076214120093531;
uint256 constant deltay2 = 8495653923123431417604973247489272438418190587263600148770280649306958101930;


uint256 constant IC0x = 21353820865548503329577756525221633465332622166799959856825877352905192473267;
uint256 constant IC0y = 156932616567894649841337587302503574238981053813007972854040490364635182694;

uint256 constant IC1x = 12322194858529188061062625971813098256741654889417169683222060161781584608609;
uint256 constant IC1y = 20246326882683168066748851145817053112674664250127727211412715232179245157022;

uint256 constant IC2x = 8022016804019415581152964105487657307044363981768180695730643477130121229579;
uint256 constant IC2y = 15328789577726767026198857145765587783001722435319756601432638671812565154978;


// Memory data
uint16 constant pVk = 0;
uint16 constant pPairing = 128;

uint16 constant pLastMem = 896;

function verifyProof(uint[2] calldata _pA, uint[2][2] calldata _pB, uint[2] calldata _pC, uint[2] calldata _pubSignals) public view returns (bool) {
assembly {
function checkField(v) {
if iszero(lt(v, q)) {
mstore(0, 0)
return(0, 0x20)
}
}

// G1 function to multiply a G1 value(x,y) to value in an address
function g1_mulAccC(pR, x, y, s) {
let success
let mIn := mload(0x40)
mstore(mIn, x)
mstore(add(mIn, 32), y)
mstore(add(mIn, 64), s)

success := staticcall(sub(gas(), 2000), 7, mIn, 96, mIn, 64)

if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}

mstore(add(mIn, 64), mload(pR))
mstore(add(mIn, 96), mload(add(pR, 32)))

success := staticcall(sub(gas(), 2000), 6, mIn, 128, pR, 64)

if iszero(success) {
mstore(0, 0)
return(0, 0x20)
}
}

function checkPairing(pA, pB, pC, pubSignals, pMem) -> isOk {
let _pPairing := add(pMem, pPairing)
let _pVk := add(pMem, pVk)

mstore(_pVk, IC0x)
mstore(add(_pVk, 32), IC0y)

// Compute the linear combination vk_x

g1_mulAccC(_pVk, IC1x, IC1y, calldataload(add(pubSignals, 0)))

g1_mulAccC(_pVk, IC2x, IC2y, calldataload(add(pubSignals, 32)))


// -A
mstore(_pPairing, calldataload(pA))
mstore(add(_pPairing, 32), mod(sub(q, calldataload(add(pA, 32))), q))

// B
mstore(add(_pPairing, 64), calldataload(pB))
mstore(add(_pPairing, 96), calldataload(add(pB, 32)))
mstore(add(_pPairing, 128), calldataload(add(pB, 64)))
mstore(add(_pPairing, 160), calldataload(add(pB, 96)))

// alpha1
mstore(add(_pPairing, 192), alphax)
mstore(add(_pPairing, 224), alphay)

// beta2
mstore(add(_pPairing, 256), betax1)
mstore(add(_pPairing, 288), betax2)
mstore(add(_pPairing, 320), betay1)
mstore(add(_pPairing, 352), betay2)

// vk_x
mstore(add(_pPairing, 384), mload(add(pMem, pVk)))
mstore(add(_pPairing, 416), mload(add(pMem, add(pVk, 32))))


// gamma2
mstore(add(_pPairing, 448), gammax1)
mstore(add(_pPairing, 480), gammax2)
mstore(add(_pPairing, 512), gammay1)
mstore(add(_pPairing, 544), gammay2)

// C
mstore(add(_pPairing, 576), calldataload(pC))
mstore(add(_pPairing, 608), calldataload(add(pC, 32)))

// delta2
mstore(add(_pPairing, 640), deltax1)
mstore(add(_pPairing, 672), deltax2)
mstore(add(_pPairing, 704), deltay1)
mstore(add(_pPairing, 736), deltay2)


let success := staticcall(sub(gas(), 2000), 8, _pPairing, 768, _pPairing, 0x20)

isOk := and(success, mload(_pPairing))
}

let pMem := mload(0x40)
mstore(0x40, add(pMem, pLastMem))

// Validate that all evaluations ∈ F

checkField(calldataload(add(_pubSignals, 0)))

checkField(calldataload(add(_pubSignals, 32)))

checkField(calldataload(add(_pubSignals, 64)))


// Validate all evaluations
let isValid := checkPairing(_pA, _pB, _pC, _pubSignals, pMem)

mstore(0, isValid)
return(0, 0x20)
}
}
}
Loading
Loading