layout | mathjax | title |
---|---|---|
page |
true |
Security & Privacy |
Granule is designed to allow different kinds of property to be tracked via its type system (see more in Language). One such example is for enforcing data privacy so that confidentiality can be automatically verified and enforced via the type system.
The type system can be parameterised by a lattice of permissions. As with the rest of Granule's property tracking, any quantitative constraints generated during type checking are discharged via an SMT solver. This allows arbitrarily complex lattices to be plugged-in to the compiler without any change to the type checker.
In these examples, we'll just use a simple two-point lattice which is
built-in, which has two values Public
and Private
. We can then,
for example, declare a secret as existing only in a private zone:
secret : Int [Private]
secret = [42]
The signature here marks the variable secret
as Private
only. We
can define operations that work on security-level guarded values,
but which are polymorphic in the level. For example, the following
simulates the idea of having a hash function:
hash : forall {l : Level} . Int [l] -> Int [l] -- at any level...
hash [x] = [x * x * x] -- ...hash by cubing
Then, if we try to write a program that is going to run in a public context, we cannot inadvertently leak the secret via the hash. For example, the following is rejected by the compiler:
-- Does not type check
main : Int [Public]
main = hash secret
We get the following error:
$ gr examples/Secure.gr
Checking examples/Secure.gr...
Type error: examples/Secure.gr: :16:1:
Definition 'main' is Falsifiable
All of the tracking is automatically computed by the type system. We can of course hash the secret in the context of a private program, e.g., the following is accepted by the type checker:
main : Int [Private]
main = hash secret
As another more interesting example. Consider the following data type which capture the idea of a patient record which has a mixture of publicly accessible and non-public fields:
data Patient where
Patient :
Int [Private] -- Patient id
-> String [Private] -- Patient name
-> Int [Public] -- Patient age
-> Patient
Here we want to allow public access to a persons age, but to nothing else.
We can then write the following function which computes the mean age of a database of patients (represented as a list), which is publicly accessible:
meanAge : (List Patient) [0..1] -> Int [Public]
meanAge xs = meanAge' xs [0] [0]
meanAge' : (List Patient) [0..1] -- Patient database
-> Int [Public] -- Current age sum
-> Int [Public] -- Count
-> Int [Public] -- Mean age viewed public
meanAge' [Next (Patient [_] [_] [age]) xs] [total] [n] =
meanAge' [xs] [age + total] [n+1];
meanAge' [Empty] [total] [n] = [div total n]
Apart from some accounting via the boxing and unboxing operator [..]
this
is just a regular tail-recursive program. Notably, the meanAge
function
takes a database (list) of patients and returns a public integer.
If we tried to "sneak" some private information out through this query or if we wrote a query that exposed some of the patient's private data, then the type system would reject it, e.g.
-- Rejected by Granule compiler
names : (List Patient) [0..1] -> String [Public]
names [Next (Patient [_] [name] [_]) xs] =
let [allNames] = names [xs] in [name `stringAppend` allNames];
names [Empty] = [""]
The full example can be found in the Examples directory
The next step is to allow partial declassification and tracking of allowed bounded amounts of leakage (e.g., we might allow the 2 bits of a patient ID to be leaked, but not the rest). We are working on primitives to allow more fine-grained tracking in this way. Furthermore, we are working on the interaction of privacy with Granule's side-effect tracking features.
We are also developing techniques to avoid control flow attacks.
At this point, Granule is a core language for experimenting with
fine-grained resource reasoning via graded modal types (the things
wrapped in [..]
). We have a companion surface-level language in
development which makes these type implicit, so that programs resemble
standard functional programs even more closely. This will then desguar
into the Granule core language in the compiler.