-
Notifications
You must be signed in to change notification settings - Fork 746
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Convert API code snippets from JS to Py (misc 1)
PiperOrigin-RevId: 564733244
- Loading branch information
1 parent
e6ca7f6
commit 2e5986a
Showing
20 changed files
with
1,346 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Copyright 2023 The Google Earth Engine Community Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# [START earthengine__apidocs__ee_classifier_explain] | ||
# A Sentinel-2 surface reflectance image, reflectance bands selected, | ||
# serves as the source for training and prediction in this contrived example. | ||
img = ee.Image( | ||
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' | ||
).select('B.*') | ||
|
||
# ESA WorldCover land cover map, used as label source in classifier training. | ||
lc = ee.Image('ESA/WorldCover/v100/2020') | ||
|
||
# Remap the land cover class values to a 0-based sequential series. | ||
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100] | ||
remap_values = ee.List.sequence(0, 10) | ||
label = 'lc' | ||
lc = lc.remap(class_values, remap_values).rename(label).toByte() | ||
|
||
# Add land cover as a band of the reflectance image and sample 100 pixels at | ||
# 10 m scale from each land cover class within a region of interest. | ||
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838) | ||
sample = img.addBands(lc).stratifiedSample( | ||
numPoints=100, classBand=label, region=roi, scale=10, geometries=True | ||
) | ||
|
||
# Add a random value field to the sample and use it to approximately split 80% | ||
# of the features into a training set and 20% into a validation set. | ||
sample = sample.randomColumn() | ||
training_sample = sample.filter('random <= 0.8') | ||
validation_sample = sample.filter('random > 0.8') | ||
|
||
# Train a 10-tree random forest classifier from the training sample. | ||
trained_classifier = ee.Classifier.smileRandomForest(10).train( | ||
features=training_sample, | ||
classProperty=label, | ||
inputProperties=img.bandNames(), | ||
) | ||
|
||
# Get information about the trained classifier. | ||
display('Results of trained classifier', trained_classifier.explain()) | ||
|
||
# Get a confusion matrix and overall accuracy for the training sample. | ||
train_accuracy = trained_classifier.confusionMatrix() | ||
display('Training error matrix', train_accuracy) | ||
display('Training overall accuracy', train_accuracy.accuracy()) | ||
|
||
# Get a confusion matrix and overall accuracy for the validation sample. | ||
validation_sample = validation_sample.classify(trained_classifier) | ||
validation_accuracy = validation_sample.errorMatrix(label, 'classification') | ||
display('Validation error matrix', validation_accuracy) | ||
display('Validation accuracy', validation_accuracy.accuracy()) | ||
|
||
# Classify the reflectance image from the trained classifier. | ||
img_classified = img.classify(trained_classifier) | ||
|
||
# Add the layers to the map. | ||
class_vis = { | ||
'min': 0, | ||
'max': 10, | ||
'palette': [ | ||
'006400', | ||
'ffbb22', | ||
'ffff4c', | ||
'f096ff', | ||
'fa0000', | ||
'b4b4b4', | ||
'f0f0f0', | ||
'0064c8', | ||
'0096a0', | ||
'00cf75', | ||
'fae6a0', | ||
], | ||
} | ||
m = geemap.Map() | ||
m.set_center(-122.184, 37.796, 12) | ||
m.add_ee_layer( | ||
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img' | ||
) | ||
m.add_ee_layer(lc, class_vis, 'lc') | ||
m.add_ee_layer(img_classified, class_vis, 'Classified') | ||
m.add_ee_layer(roi, {'color': 'white'}, 'ROI', False, 0.5) | ||
m.add_ee_layer(training_sample, {'color': 'black'}, 'Training sample', False) | ||
m.add_ee_layer( | ||
validation_sample, {'color': 'white'}, 'Validation sample', False | ||
) | ||
m | ||
# [END earthengine__apidocs__ee_classifier_explain] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# Copyright 2023 The Google Earth Engine Community Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# [START earthengine__apidocs__ee_classifier_libsvm] | ||
# A Sentinel-2 surface reflectance image, reflectance bands selected, | ||
# serves as the source for training and prediction in this contrived example. | ||
img = ee.Image( | ||
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' | ||
).select('B.*') | ||
|
||
# ESA WorldCover land cover map, used as label source in classifier training. | ||
lc = ee.Image('ESA/WorldCover/v100/2020') | ||
|
||
# Remap the land cover class values to a 0-based sequential series. | ||
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100] | ||
remap_values = ee.List.sequence(0, 10) | ||
label = 'lc' | ||
lc = lc.remap(class_values, remap_values).rename(label).toByte() | ||
|
||
# Add land cover as a band of the reflectance image and sample 100 pixels at | ||
# 10 m scale from each land cover class within a region of interest. | ||
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838) | ||
sample = img.addBands(lc).stratifiedSample( | ||
numPoints=100, classBand=label, region=roi, scale=10, geometries=True | ||
) | ||
|
||
# Add a random value field to the sample and use it to approximately split 80% | ||
# of the features into a training set and 20% into a validation set. | ||
sample = sample.randomColumn() | ||
training_sample = sample.filter('random <= 0.8') | ||
validation_sample = sample.filter('random > 0.8') | ||
|
||
# Train an SVM classifier (C-SVM classification, voting decision procedure, | ||
# linear kernel) from the training sample. | ||
trained_classifier = ee.Classifier.libsvm().train( | ||
features=training_sample, | ||
classProperty=label, | ||
inputProperties=img.bandNames(), | ||
) | ||
|
||
# Get information about the trained classifier. | ||
display('Results of trained classifier', trained_classifier.explain()) | ||
|
||
# Get a confusion matrix and overall accuracy for the training sample. | ||
train_accuracy = trained_classifier.confusionMatrix() | ||
display('Training error matrix', train_accuracy) | ||
display('Training overall accuracy', train_accuracy.accuracy()) | ||
|
||
# Get a confusion matrix and overall accuracy for the validation sample. | ||
validation_sample = validation_sample.classify(trained_classifier) | ||
validation_accuracy = validation_sample.errorMatrix(label, 'classification') | ||
display('Validation error matrix', validation_accuracy) | ||
display('Validation accuracy', validation_accuracy.accuracy()) | ||
|
||
# Classify the reflectance image from the trained classifier. | ||
img_classified = img.classify(trained_classifier) | ||
|
||
# Add the layers to the map. | ||
class_vis = { | ||
'min': 0, | ||
'max': 10, | ||
'palette': [ | ||
'006400', | ||
'ffbb22', | ||
'ffff4c', | ||
'f096ff', | ||
'fa0000', | ||
'b4b4b4', | ||
'f0f0f0', | ||
'0064c8', | ||
'0096a0', | ||
'00cf75', | ||
'fae6a0', | ||
], | ||
} | ||
m = geemap.Map() | ||
m.set_center(-122.184, 37.796, 12) | ||
m.add_ee_layer( | ||
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img' | ||
) | ||
m.add_ee_layer(lc, class_vis, 'lc') | ||
m.add_ee_layer(img_classified, class_vis, 'Classified') | ||
m.add_ee_layer(roi, {'color': 'white'}, 'ROI', False, 0.5) | ||
m.add_ee_layer(training_sample, {'color': 'black'}, 'Training sample', False) | ||
m.add_ee_layer( | ||
validation_sample, {'color': 'white'}, 'Validation sample', False | ||
) | ||
m | ||
# [END earthengine__apidocs__ee_classifier_libsvm] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
# Copyright 2023 The Google Earth Engine Community Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
# [START earthengine__apidocs__ee_classifier_smilecart] | ||
# A Sentinel-2 surface reflectance image, reflectance bands selected, | ||
# serves as the source for training and prediction in this contrived example. | ||
img = ee.Image( | ||
'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG' | ||
).select('B.*') | ||
|
||
# ESA WorldCover land cover map, used as label source in classifier training. | ||
lc = ee.Image('ESA/WorldCover/v100/2020') | ||
|
||
# Remap the land cover class values to a 0-based sequential series. | ||
class_values = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100] | ||
remap_values = ee.List.sequence(0, 10) | ||
label = 'lc' | ||
lc = lc.remap(class_values, remap_values).rename(label).toByte() | ||
|
||
# Add land cover as a band of the reflectance image and sample 100 pixels at | ||
# 10 m scale from each land cover class within a region of interest. | ||
roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838) | ||
sample = img.addBands(lc).stratifiedSample( | ||
numPoints=100, classBand=label, region=roi, scale=10, geometries=True | ||
) | ||
|
||
# Add a random value field to the sample and use it to approximately split 80% | ||
# of the features into a training set and 20% into a validation set. | ||
sample = sample.randomColumn() | ||
training_sample = sample.filter('random <= 0.8') | ||
validation_sample = sample.filter('random > 0.8') | ||
|
||
# Train a CART classifier (up to 10 leaf nodes in each tree) from the | ||
# training sample. | ||
trained_classifier = ee.Classifier.smileCart(10).train( | ||
features=training_sample, | ||
classProperty=label, | ||
inputProperties=img.bandNames(), | ||
) | ||
|
||
# Get information about the trained classifier. | ||
display('Results of trained classifier', trained_classifier.explain()) | ||
|
||
# Get a confusion matrix and overall accuracy for the training sample. | ||
train_accuracy = trained_classifier.confusionMatrix() | ||
display('Training error matrix', train_accuracy) | ||
display('Training overall accuracy', train_accuracy.accuracy()) | ||
|
||
# Get a confusion matrix and overall accuracy for the validation sample. | ||
validation_sample = validation_sample.classify(trained_classifier) | ||
validation_accuracy = validation_sample.errorMatrix(label, 'classification') | ||
display('Validation error matrix', validation_accuracy) | ||
display('Validation accuracy', validation_accuracy.accuracy()) | ||
|
||
# Classify the reflectance image from the trained classifier. | ||
img_classified = img.classify(trained_classifier) | ||
|
||
# Add the layers to the map. | ||
class_vis = { | ||
'min': 0, | ||
'max': 10, | ||
'palette': [ | ||
'006400', | ||
'ffbb22', | ||
'ffff4c', | ||
'f096ff', | ||
'fa0000', | ||
'b4b4b4', | ||
'f0f0f0', | ||
'0064c8', | ||
'0096a0', | ||
'00cf75', | ||
'fae6a0', | ||
], | ||
} | ||
m = geemap.Map() | ||
m.set_center(-122.184, 37.796, 12) | ||
m.add_ee_layer( | ||
img, {'bands': ['B11', 'B8', 'B3'], 'min': 100, 'max': 3500}, 'img' | ||
) | ||
m.add_ee_layer(lc, class_vis, 'lc') | ||
m.add_ee_layer(img_classified, class_vis, 'Classified') | ||
m.add_ee_layer(roi, {'color': 'white'}, 'ROI', False, 0.5) | ||
m.add_ee_layer(training_sample, {'color': 'black'}, 'Training sample', False) | ||
m.add_ee_layer( | ||
validation_sample, {'color': 'white'}, 'Validation sample', False | ||
) | ||
m | ||
# [END earthengine__apidocs__ee_classifier_smilecart] |
Oops, something went wrong.