-
Notifications
You must be signed in to change notification settings - Fork 160
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PiperOrigin-RevId: 655100776 Change-Id: I2ce096d6be1b4a32127d5e3fb93df3160f5ca1d2
- Loading branch information
1 parent
f7d1656
commit 7efcc4d
Showing
3 changed files
with
201 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
192 changes: 192 additions & 0 deletions
192
concordia/factory/agent/rational_entity_agent__main_role.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,192 @@ | ||
# Copyright 2024 DeepMind Technologies Limited. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""An Agent Factory.""" | ||
|
||
import datetime | ||
|
||
from concordia.agents import basic_agent | ||
from concordia.agents import entity_agent_with_logging | ||
from concordia.associative_memory import associative_memory | ||
from concordia.associative_memory import formative_memories | ||
from concordia.clocks import game_clock | ||
from concordia.components.agent import v2 as agent_components | ||
from concordia.language_model import language_model | ||
from concordia.memory_bank import legacy_associative_memory | ||
from concordia.utils import measurements as measurements_lib | ||
|
||
|
||
def _get_class_name(object_: object) -> str: | ||
return object_.__class__.__name__ | ||
|
||
|
||
def build_agent( | ||
config: formative_memories.AgentConfig, | ||
model: language_model.LanguageModel, | ||
memory: associative_memory.AssociativeMemory, | ||
clock: game_clock.MultiIntervalClock, | ||
update_time_interval: datetime.timedelta, | ||
) -> basic_agent.BasicAgent: | ||
"""Build an agent. | ||
Args: | ||
config: The agent config to use. | ||
model: The language model to use. | ||
memory: The agent's memory object. | ||
clock: The clock to use. | ||
update_time_interval: Agent calls update every time this interval passes. | ||
Returns: | ||
An agent. | ||
""" | ||
del update_time_interval | ||
if not config.extras.get('main_character', False): | ||
raise ValueError('This function is meant for a main character ' | ||
'but it was called on a supporting character.') | ||
|
||
agent_name = config.name | ||
|
||
raw_memory = legacy_associative_memory.AssociativeMemoryBank(memory) | ||
|
||
measurements = measurements_lib.Measurements() | ||
instructions = agent_components.instructions.Instructions( | ||
agent_name=agent_name, | ||
logging_channel=measurements.get_channel('Instructions').on_next, | ||
) | ||
|
||
time_display = agent_components.report_function.ReportFunction( | ||
function=clock.current_time_interval_str, | ||
pre_act_key='\nCurrent time', | ||
logging_channel=measurements.get_channel('TimeDisplay').on_next, | ||
) | ||
|
||
observation_label = '\nObservation' | ||
observation = agent_components.observation.Observation( | ||
clock_now=clock.now, | ||
timeframe=clock.get_step_size(), | ||
pre_act_key=observation_label, | ||
logging_channel=measurements.get_channel('Observation').on_next, | ||
) | ||
observation_summary_label = 'Summary of recent observations' | ||
observation_summary = agent_components.observation.ObservationSummary( | ||
model=model, | ||
clock_now=clock.now, | ||
timeframe_delta_from=datetime.timedelta(hours=4), | ||
timeframe_delta_until=datetime.timedelta(hours=1), | ||
pre_act_key=observation_summary_label, | ||
logging_channel=measurements.get_channel('ObservationSummary').on_next, | ||
) | ||
|
||
relevant_memories_label = '\nRecalled memories and observations' | ||
relevant_memories = agent_components.all_similar_memories.AllSimilarMemories( | ||
model=model, | ||
components={ | ||
_get_class_name(observation_summary): observation_summary_label, | ||
_get_class_name(time_display): 'The current date/time is'}, | ||
num_memories_to_retrieve=10, | ||
pre_act_key=relevant_memories_label, | ||
logging_channel=measurements.get_channel('AllSimilarMemories').on_next, | ||
) | ||
|
||
options_perception_components = {} | ||
if config.goal: | ||
goal_label = '\nOverarching goal' | ||
overarching_goal = agent_components.constant.Constant( | ||
state=config.goal, | ||
pre_act_key=goal_label, | ||
logging_channel=measurements.get_channel(goal_label).on_next) | ||
options_perception_components[goal_label] = goal_label | ||
else: | ||
goal_label = None | ||
overarching_goal = None | ||
|
||
options_perception_components.update({ | ||
_get_class_name(observation): observation_label, | ||
_get_class_name(observation_summary): observation_summary_label, | ||
_get_class_name(relevant_memories): relevant_memories_label, | ||
}) | ||
options_perception_label = ( | ||
f'\nQuestion: Which options are available to {agent_name} ' | ||
'right now?\nAnswer') | ||
options_perception = ( | ||
agent_components.options_perception.AvailableOptionsPerception( | ||
model=model, | ||
components=options_perception_components, | ||
clock_now=clock.now, | ||
pre_act_key=options_perception_label, | ||
logging_channel=measurements.get_channel( | ||
'AvailableOptionsPerception').on_next, | ||
) | ||
) | ||
best_option_perception_label = ( | ||
f'\nQuestion: Of the options available to {agent_name}, and ' | ||
'given their goal, which choice of action or strategy is ' | ||
f'best for {agent_name} to take right now?\nAnswer') | ||
best_option_perception = {} | ||
if config.goal: | ||
best_option_perception[goal_label] = goal_label | ||
best_option_perception.update({ | ||
_get_class_name(observation): observation_label, | ||
_get_class_name(observation_summary): observation_summary_label, | ||
_get_class_name(relevant_memories): relevant_memories_label, | ||
_get_class_name(options_perception): options_perception_label, | ||
}) | ||
best_option_perception = ( | ||
agent_components.options_perception.BestOptionPerception( | ||
model=model, | ||
components=best_option_perception, | ||
clock_now=clock.now, | ||
pre_act_key=best_option_perception_label, | ||
logging_channel=measurements.get_channel( | ||
'BestOptionPerception').on_next, | ||
) | ||
) | ||
|
||
entity_components = ( | ||
# Components that provide pre_act context. | ||
instructions, | ||
time_display, | ||
observation, | ||
observation_summary, | ||
relevant_memories, | ||
options_perception, | ||
best_option_perception, | ||
) | ||
components_of_agent = {_get_class_name(component): component | ||
for component in entity_components} | ||
components_of_agent[ | ||
agent_components.memory_component.DEFAULT_MEMORY_COMPONENT_NAME] = ( | ||
agent_components.memory_component.MemoryComponent(raw_memory)) | ||
|
||
component_order = list(components_of_agent.keys()) | ||
if overarching_goal is not None: | ||
components_of_agent[goal_label] = overarching_goal | ||
# Place goal after the instructions. | ||
component_order.insert(1, goal_label) | ||
|
||
act_component = agent_components.concat_act_component.ConcatActComponent( | ||
model=model, | ||
clock=clock, | ||
component_order=component_order, | ||
logging_channel=measurements.get_channel('ActComponent').on_next, | ||
) | ||
|
||
agent = entity_agent_with_logging.EntityAgentWithLogging( | ||
agent_name=agent_name, | ||
act_component=act_component, | ||
context_components=components_of_agent, | ||
component_logging=measurements, | ||
) | ||
|
||
return agent |