Skip to content

ghe-learn/data

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data resources

library(tidyverse)

Introduction

This repo contains explorations of data that is published openly. Topics include: Waste Management, Air Quality, Wastewater Management, Faecal Sludge Management, WASH (Water, Sanitation, and Hygiene).

For now, all exploration is done in a single R Markdown script rendered to this README file. As the document grows, it will be split into sets of scripts per topic.

Waste Management

Abidjan, Cote d’Ivoire, waste characterization data, Feb-Mar 2018

Reference: (Innovations 2020)

Results of municipal solid waste characterization study conducted in Abidjan, Cote d’Ivoire, in February-March, 2018 by Waste2Worth Innovations.

dat <- read_csv("data/raw/@innovations2020abidjan/Abidjan, Cote d'Ivoire, waste characterization data, Feb-Mar 2018.csv") %>% 
  janitor::clean_names() %>% 
  group_by(sample) %>% 
  mutate(
    percent = mass_kg / sum(mass_kg) * 100
  ) %>% 
  ungroup()

Exploration

  • 2080 observations
  • 8 days of data collection
  • 80 samples with measurements in 26 waste categories each
dat %>% 
  count(date)
## # A tibble: 8 × 2
##   date       n
##   <chr>  <int>
## 1 1-Mar    260
## 2 2-Mar    260
## 3 23-Feb   260
## 4 24-Feb   156
## 5 26-Feb   286
## 6 27-Feb   260
## 7 28-Feb   234
## 8 3-Mar    364
dat %>% 
  count(sample)
## # A tibble: 80 × 2
##    sample     n
##    <chr>  <int>
##  1 1-A1      26
##  2 1-A2      26
##  3 1-A3      26
##  4 1-A4      26
##  5 1-A5      26
##  6 1-B1      26
##  7 1-B2      26
##  8 1-B3      26
##  9 1-B4      26
## 10 1-B5      26
## # … with 70 more rows
dat %>% 
  count(date, sample)
## # A tibble: 80 × 3
##    date  sample     n
##    <chr> <chr>  <int>
##  1 1-Mar 1-A1      26
##  2 1-Mar 1-A2      26
##  3 1-Mar 1-A3      26
##  4 1-Mar 1-A4      26
##  5 1-Mar 1-A5      26
##  6 1-Mar 1-B1      26
##  7 1-Mar 1-B2      26
##  8 1-Mar 1-B3      26
##  9 1-Mar 1-B4      26
## 10 1-Mar 1-B5      26
## # … with 70 more rows
dat %>% 
  count(category) 
## # A tibble: 26 × 2
##    category                        n
##    <chr>                       <int>
##  1 (Household) Hazardous waste    80
##  2 All Low Value Plastic          80
##  3 Aluminum Waste                 80
##  4 Cardboards                     80
##  5 Copper waste                   80
##  6 Ferrous Metals                 80
##  7 Fines                          80
##  8 Food/Organic                   80
##  9 Glass                          80
## 10 HDPE (#2)                      80
## # … with 16 more rows
dat %>% 
  arrange(sample)
## # A tibble: 2,080 × 5
##    date  sample category                  mass_kg percent
##    <chr> <chr>  <chr>                       <dbl>   <dbl>
##  1 1-Mar 1-A1   Food/Organic                36.6   49.8  
##  2 1-Mar 1-A1   Paper (white)                0      0    
##  3 1-Mar 1-A1   Other recyclable Paper       0.4    0.545
##  4 1-Mar 1-A1   Non-recyclable Paper         0.72   0.981
##  5 1-Mar 1-A1   Cardboards                   2.92   3.98 
##  6 1-Mar 1-A1   Textile                      3.83   5.22 
##  7 1-Mar 1-A1   All Low Value Plastic        4.29   5.84 
##  8 1-Mar 1-A1   Medium Value Plastic (#4)    2.46   3.35 
##  9 1-Mar 1-A1   PP (#5)                      0.55   0.749
## 10 1-Mar 1-A1   PET (#1)                     0.32   0.436
## # … with 2,070 more rows

Summary tables

dat %>% 
  group_by(sample) %>% 
  summarise(
    sum_mass_kg = sum(mass_kg)
  ) %>% 
  arrange(desc(sum_mass_kg)) 
## # A tibble: 80 × 2
##    sample sum_mass_kg
##    <chr>        <dbl>
##  1 24-B2         166 
##  2 24-B1         166.
##  3 23-A3         135.
##  4 23-B5         134.
##  5 23-B2         128.
##  6 23-B4         127.
##  7 23-B3         126.
##  8 26-B5X        126.
##  9 3-A2          123.
## 10 23-B1         119.
## # … with 70 more rows
dat %>% 
  arrange(sample) %>% 
  group_by(category) %>% 
  summarise(
    count = n(),
    mean = mean(percent),
    sd = sd(percent),
    min = min(percent),
    max = max(percent)
  ) %>% 
  arrange(desc(mean)) %>% 
  knitr::kable(digits = 1)
category count mean sd min max
Food/Organic 80 62.5 11.0 27.4 89.7
Inerts 80 5.8 7.8 0.0 33.3
All Low Value Plastic 80 5.7 2.8 2.7 13.6
Hygiene Items 80 5.2 3.5 -0.6 13.6
Medium Value Plastic (#4) 80 3.4 1.7 0.0 7.5
Textile 80 3.1 2.5 0.1 12.0
Cardboards 80 2.1 1.9 0.0 8.8
Non-recyclable Paper 80 2.0 1.7 0.0 8.2
Glass 80 1.6 2.1 0.0 12.9
Unclassified Waste 80 1.4 2.8 0.0 17.4
Other recyclable Paper 80 1.2 1.3 0.0 6.0
Other Ferrous Metals 80 1.0 0.8 0.0 3.1
Rattan & Wood 80 0.9 1.1 0.0 5.7
PET (#1) 80 0.8 1.1 0.0 8.7
Onter Non-Ferrous Metals 80 0.8 0.6 0.0 4.0
PP (#5) 80 0.4 0.4 0.0 2.4
HDPE (#2) 80 0.4 0.4 0.0 2.2
Leather 80 0.4 0.8 0.0 5.0
Rubber 80 0.4 0.5 0.0 2.2
Ferrous Metals 80 0.3 0.5 0.0 2.8
(Household) Hazardous waste 80 0.2 0.2 0.0 1.2
Aluminum Waste 80 0.1 0.2 0.0 0.7
Paper (white) 80 0.1 0.3 0.0 2.3
PVC (#3) 80 0.1 0.3 0.0 2.4
Copper waste 80 0.0 0.1 0.0 1.3
Fines 80 0.0 0.0 0.0 0.1

Data visualisation

dat %>% 
  ggplot(aes(x = sample, y = percent, fill = category)) +
  geom_col()

dat %>% 
  ggplot(aes(x = reorder(category, percent), y = percent)) +
  coord_flip() +
  geom_jitter(width = 0.1, alpha = 0.3)

Ramadan, Rachman, and Matsumoto (2022)

Reference: (Ramadan, Rachman, and Matsumoto 2022)

readxl::read_excel("data/raw/@ramadan2022activity/10163_2022_1371_MOESM2_ESM.xls")
## # A tibble: 20 × 17
##    ...1      `Sub-district`          District  `Average Slope` `Average elevati…
##    <chr>     <chr>                   <chr>               <dbl>             <dbl>
##  1 Cluster … Wonolopo                Mijen                  15               230
##  2 <NA>      Podorejo                Ngaliyan                5               123
##  3 <NA>      Rowosari                Tembalang              10                41
##  4 <NA>      Tugurejo                Tugu                    2                 5
##  5 Cluster … Penggaron Kidul         Pedurung…               2                19
##  6 <NA>      Kandri                  Gunungpa…               5               230
##  7 <NA>      Tambakharjo             Semarang…               5                 6
##  8 <NA>      Gedawang                Banyuman…               5               214
##  9 Cluster … Gayamsari               Gayamsari               2                10
## 10 <NA>      Karangroto              Genuk                   2                 8
## 11 <NA>      Karang Tempel           Semarang…               2                10
## 12 <NA>      Sampangan               Gajah Mu…               5                18
## 13 Cluster … Jagalan                 Semarang…               2                10
## 14 <NA>      Barusari                Semarang…               5                12
## 15 <NA>      Candi                   Candisari               5                55
## 16 <NA>      Purwosari               Semarang…               2                 6
## 17 <NA>      <NA>                    <NA>                   NA                NA
## 18 <NA>      Total education facili… <NA>                   NA                NA
## 19 <NA>      Total healthcare facil… <NA>                   NA                NA
## 20 <NA>      Total economic facilit… <NA>                   NA                NA
## # … with 12 more variables: Area of agricultural land (ha) <dbl>,
## #   Area of non-agricultural land (ha) <dbl>,
## #   Number of Population (inhabitant) <dbl>, Area (km2) <dbl>,
## #   Number of Household (Unit) <dbl>, Housing Density (HH/km2) <dbl>,
## #   Population Density (people/km2) <dbl>,
## #   Total Education Facility (Unit) <dbl>,
## #   Total Healthcare Facility (Unit) <dbl>, …

Zürich (2022)

References

Innovations, Waste2Worth. 2020. “Abidjan, Cote d’Ivoire, Waste Characterization Data, Feb-Mar 2018.” Zenodo. https://doi.org/10.5281/zenodo.4012765.

Ramadan, Bimastyaji Surya, Indriyani Rachman, and Toru Matsumoto. 2022. “Activity and Emission Inventory of Open Waste Burning at the Household Level in Developing Countries: A Case Study of Semarang City.” Journal of Material Cycles and Waste Management, February. https://doi.org/10.1007/s10163-022-01371-3.

Zürich, Stadt. 2022. “Abfallgefässe - Stadt Zürich.” https://www.stadt-zuerich.ch/geodaten/download/Abfallgefaesse.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages