Skip to content

gawsoftpl/mlserver-openvino

Repository files navigation

Overview

This package provides a MLServer runtime compatible with Openvino. This package has couple features:

  1. If server detect that model file is onnx format script will auto convert to openvino format (xml, bin) with dynamic batch size for openvino.
  2. Openvino dynamic batch size
  3. Grpc Ready
  4. V2 Inference Protocol
  5. Models metrics

Why MLserver?

For serving Openvino I choose MLServer because this framework has V2 Inference Protocol (https://kserve.github.io/website/modelserving/inference_api/), grpc and metrics out of the box.

Install

pip install mlserver mlserver-openvino

Content Types

If no content type is present on the request or metadata, the Openvino runtime will try to decode the payload as a NumPy Array. To avoid this, either send a different content type explicitly, or define the correct one as part of your model’s metadata.

Models repository

Your models add to models folder. Accepted files: ["model.xml", "model.onnx"]

/example
/models/your-model-name/
/tests
setup.py
README.md

Training and serve example: https://mlserver.readthedocs.io/en/latest/examples/sklearn/README.html

Metrics

For download metrics (prometheus) use below links

GET http://<your-endpoint>/metrics
GET http://0.0.0.0:8080/metrics

Start docker server

# Build docker image
mlserver build . -t test

# Start server and pass mlserevr_models_dir
docker run -it --rm -e MLSERVER_MODELS_DIR=/opt/mlserver/models/ -p 8080:8080 -p 8081:8081 test

Example queries:

For example script see below files:

/example/grpc-example.py
/example/rest-example.py

Kserve usage

  1. First create one time kserve runtime from file: kserve/cluster-runtime.yaml
  2. Create InferenceService from template:
apiVersion: "serving.kserve.io/v1beta1"
kind: "InferenceService"
metadata:
  name: "my-openvino-model"
spec:
  predictor:
    model:
      modelFormat:
        name: openvino
      runtime: kserve-mlserver-openvino
      #storageUri: "gs://kfserving-examples/models/xgboost/iris"
      storageUri: https://github.com/myrepo/models/mymodel.joblib?raw=true

Example model-settings.json

{
    "name": "mnist-onnx-openvino",
    "implementation": "mlserver_openvino.OpenvinoRuntime",
    "parameters": {
        "uri": "./model.onnx",
        "version": "v0.1.0",
        "extra": {
            "transform": [
                {
                    "name": "Prepare Metadata",
                    "pipeline_file_path": "./pipeline.cloudpickle",
                    "input_index": 0
                }
            ]
        }
    },
    "inputs": [
        {
            "name": "input-0",
            "datatype": "FP32",
            "shape": [28,28,1]
        }
    ],
    "outputs": [
        {
            "name": "output",
            "datatype": "FP32",
            "shape": [10]
        }
    ]
}

Transformers

If you add transformer pipeline in extra properties you should dump code in same python version as execute mlserver

Tests

make test