Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add lemma statements from section 6.2 #154

Merged
merged 9 commits into from
Oct 31, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Carleson.lean
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import Carleson.Antichain.AntichainOperator
import Carleson.Antichain.AntichainTileCount
import Carleson.Antichain.TileCorrelation
import Carleson.Classical.Approximation
import Carleson.Classical.Basic
import Carleson.Classical.CarlesonOnTheRealLine
Expand Down
6 changes: 3 additions & 3 deletions Carleson/Antichain/AntichainOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -300,7 +300,7 @@ lemma _root_.Set.eq_indicator_one_mul {F : Set X} {f : X → ℂ} (hf : ∀ x,
/-- Constant appearing in Lemma 6.1.3. -/
noncomputable def C_6_1_3 (a : ℝ) (q : ℝ≥0) : ℝ≥0 := 2^(111*a^3)*(q-1)⁻¹

-- Inequality 6.1.15
-- Inequality 6.1.16
lemma eLpNorm_maximal_function_le' {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (·≤·) (𝔄 : Set (𝔓 X)))
{f : X → ℂ} (hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) (hfm : Measurable f) :
eLpNorm (fun x ↦ (maximalFunction volume (↑𝔄) 𝔠 (fun 𝔭 ↦ 8 * ↑D ^ 𝔰 𝔭)
Expand Down Expand Up @@ -510,8 +510,8 @@ def C_2_0_3 (a q : ℝ) : ℝ := 2 ^ (150 * a ^ 3) / (q - 1)

/-- Proposition 2.0.3 -/
theorem antichain_operator {𝔄 : Set (𝔓 X)} {f g : X → ℂ}
(hf : Measurable f) (h2f : ∀ x, ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g) (hg : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
(hf : Measurable f) (hf1 : ∀ x, ‖f x‖ ≤ F.indicator 1 x)
(hg : Measurable g) (hg1 : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
(h𝔄 : IsAntichain (·≤·) (toTileLike (X := X) '' 𝔄)) :
‖∫ x, conj (g x) * ∑ᶠ p : 𝔄, carlesonOn p f x‖ ≤
C_2_0_3 a q * (dens₁ 𝔄).toReal ^ ((q - 1) / (8 * a ^ 4)) * (dens₂ 𝔄).toReal ^ (q⁻¹ - 2⁻¹) *
Expand Down
81 changes: 81 additions & 0 deletions Carleson/Antichain/TileCorrelation.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import Carleson.ForestOperator.AlmostOrthogonality
import Carleson.HardyLittlewood
import Carleson.Psi
import Carleson.TileStructure


noncomputable section

open scoped ComplexConjugate ENNReal NNReal ShortVariables

open MeasureTheory Metric Set

namespace Tile

variable {X : Type*} {a : ℕ} {q : ℝ} {K : X → X → ℂ} {σ₁ σ₂ : X → ℤ} {F G : Set X} [MetricSpace X]
[ProofData a q K σ₁ σ₂ F G]

-- Def 6.2.1 (Lemma 6.2.1)
def correlation (s₁ s₂ : ℤ) (x₁ x₂ y : X) : ℂ := (conj (Ks s₁ x₁ y)) * (Ks s₂ x₂ y)

-- Eq. 6.2.2 (Lemma 6.2.1)
lemma mem_ball_of_correlation_ne_zero {s₁ s₂ : ℤ} {x₁ x₂ y : X}
(hy : correlation s₁ s₂ x₁ x₂ y ≠ 0) : y ∈ (ball x₁ (↑D ^s₁)) := by
have hKs : Ks s₁ x₁ y ≠ 0 := by
simp only [correlation, ne_eq, mul_eq_zero, map_eq_zero, not_or] at hy
exact hy.1
rw [mem_ball, dist_comm]
exact lt_of_le_of_lt (dist_mem_Icc_of_Ks_ne_zero hKs).2
(half_lt_self_iff.mpr (defaultD_pow_pos a s₁))

def C_6_2_1 (a : ℕ) : ℝ≥0 := 2^(254 * a^3)

-- Eq. 6.2.3 (Lemma 6.2.1)
lemma correlation_kernel_bound {s₁ s₂ : ℤ} (hs₁ : s₁ ∈ Icc (- (S : ℤ)) s₂)
(hs₂ : s₂ ∈ Icc s₁ S) {x₁ x₂ y : X} (hy : correlation s₁ s₂ x₁ x₂ y ≠ 0)/- Is hy needed?-/ :
hnorm (a := a) (correlation s₁ s₂ x₁ x₂) x₁ ↑D ^s₁ ≤
(C_6_2_1 a : ℝ≥0∞) / (volume (ball x₁ (↑D ^s₁)) * volume (ball x₂ (↑D ^s₂))) := by
sorry

variable [TileStructure Q D κ S o]

def C_6_2_2 (a : ℕ) : ℝ≥0 := 2^(3 * a)

-- Lemma 6.2.2
lemma uncertainty {p₁ p₂ : 𝔓 X} (hle : 𝔰 p₁ ≤ 𝔰 p₂) {x₁ x₂ : X} (hx₁ : x₁ ∈ E p₁)
(hx₂ : x₂ ∈ E p₂) :
1 + dist_(p₁) (𝒬 p₁) (𝒬 p₂) ≤ (C_6_2_2 a) * (1 + dist_{x₁, D^𝔰 p₁} (Q x₁) (Q x₂)) :=
sorry

open TileStructure.Forest

-- Lemma 6.2.3
lemma range_support {p : 𝔓 X} {g : X → ℂ} (hg : Measurable g)
(hg1 : ∀ x, ‖g x‖ ≤ G.indicator 1 x) {y : X} (hpy : adjointCarleson p g y ≠ 0) :
y ∈ (ball (𝔠 p) (5 * ↑D ^𝔰 p)) :=
sorry

def C_6_1_5 (a : ℕ) : ℝ≥0 := 2^(255 * a^3)

open GridStructure

-- Lemma 6.1.5 (part I)
lemma correlation_le {p p' : 𝔓 X} (hle : 𝔰 p' ≤ 𝔰 p) {g : X → ℂ} (hg : Measurable g)
(hg1 : ∀ x, ‖g x‖ ≤ G.indicator 1 x) :
‖ ∫ y, (adjointCarleson p' g y) * conj (adjointCarleson p g y) ‖₊ ≤
(C_6_1_5 a) * ((1 + dist_(p') (𝒬 p') (𝒬 p))^(-(1 : ℝ)/(2*a^2 + a^3))) /
(volume.nnreal (coeGrid (𝓘 p))) * ∫ y in E p', ‖ g y‖ * ∫ y in E p, ‖ g y‖ := by
sorry

-- Lemma 6.1.5 (part II)
lemma correlation_zero_of_ne_subset {p p' : 𝔓 X} (hle : 𝔰 p' ≤ 𝔰 p) {g : X → ℂ}
(hg : Measurable g) (hg1 : ∀ x, ‖g x‖ ≤ G.indicator 1 x)
(hpp' : ¬ coeGrid (𝓘 p) ⊆ ball (𝔠 p) (15 * ↑D ^𝔰 p) ) :
‖ ∫ y, (adjointCarleson p' g y) * conj (adjointCarleson p g y) ‖₊ = 0 := by
by_contra h0
apply hpp'
have hy : ∃ y : X, (adjointCarleson p' g y) * conj (adjointCarleson p g y) ≠ 0 := sorry
obtain ⟨y, hy⟩ := hy
sorry

end Tile
8 changes: 8 additions & 0 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -3542,6 +3542,8 @@ \section{The density arguments}\label{sec-TT*-T*T}
The following basic $TT^*$ estimate will be proved in \Cref{sec-tile-operator}.
\begin{lemma}[tile correlation]
\label{tile-correlation}
\leanok
\lean{Tile.correlation_le, Tile.correlation_zero_of_ne_subset}
\uses{Holder-van-der-Corput,correlation-kernel-bound,tile-uncertainty,tile-range-support}
Let $\fp, \fp'\in \fP$ with
$\ps({\fp'})\leq \ps({\fp})$.
Expand Down Expand Up @@ -3602,6 +3604,8 @@ \section{Proof of the Tile Correlation Lemma}\label{sec-tile-operator}
The next lemma prepares an application of
\Cref{Holder-van-der-Corput}.
\begin{lemma}[correlation kernel bound]\label{correlation-kernel-bound}
\leanok
\lean{Tile.correlation, Tile.mem_ball_of_correlation_ne_zero, Tile.correlation_kernel_bound}
Let $-S\le s_1\le s_2\le S$ and let $x_1,x_2\in X$.
Define \begin{equation}
\varphi(y) := \overline{K_{s_1}(x_1, y)}
Expand Down Expand Up @@ -3655,6 +3659,8 @@ \section{Proof of the Tile Correlation Lemma}\label{sec-tile-operator}
\end{proof}
The next lemma is a geometric estimate for two tiles.
\begin{lemma}\label{tile-uncertainty}
\leanok
\lean{Tile.uncertainty}
\uses{monotone-cube-metrics}
Let $\fp_1, \fp_2\in \fP$ with
$\ps({\fp_1})\leq \ps({\fp_2})$. For each $x_1\in E(\fp_1)$ and
Expand Down Expand Up @@ -3704,6 +3710,8 @@ \section{Proof of the Tile Correlation Lemma}\label{sec-tile-operator}


\begin{lemma}[tile range support]\label{tile-range-support}
\leanok
\lean{Tile.range_support}
For each $\fp\in \fP$, and each $y\in X$, we have that
\begin{equation}\label{tstargnot0}
T_{\fp}^* g(y)\neq 0
Expand Down