Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Lemma 7.2.4 #132

Merged
merged 2 commits into from
Sep 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
69 changes: 64 additions & 5 deletions Carleson/ForestOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ lemma second_tree_pointwise (hu : u ∈ t) (hL : L ∈ 𝓛 (t u)) (hx : x ∈ L
· unfold defaultD; positivity
_ < _ := by rw [mul_comm]; gcongr
have d1 : dist_{x, D ^ (s₂ - 1)} (𝒬 u) (Q x) < 1 := by
have := le_cdist_iterate (x := x) (r := D ^ (s₂ - 1)) (by sorry) (𝒬 u) (Q x) (100 * a)
have := le_cdist_iterate (x := x) (r := D ^ (s₂ - 1)) (by positivity) (𝒬 u) (Q x) (100 * a)
calc
_ ≤ dist_{x, D ^ s₂} (𝒬 u) (Q x) * 2 ^ (-100 * a : ℤ) := by
rw [neg_mul, zpow_neg, le_mul_inv_iff₀ (by positivity), mul_comm]
Expand Down Expand Up @@ -274,11 +274,70 @@ lemma nontangential_operator_bound
eLpNorm (nontangentialMaximalFunction θ f · |>.toReal) 2 volume ≤ eLpNorm f 2 volume := by
sorry

/-- The set of cubes in Lemma 7.2.4. -/
def kissing (I : Grid X) : Finset (Grid X) :=
{J | s J = s I ∧ ¬Disjoint (ball (c I) (16 * D ^ s I)) (ball (c J) (16 * D ^ s J))}

lemma subset_of_kissing (h : J ∈ kissing I) :
ball (c J) (D ^ s J / 4) ⊆ ball (c I) (33 * D ^ s I) := by
simp_rw [kissing, Finset.mem_filter, Finset.mem_univ, true_and] at h
obtain ⟨x, xI, xJ⟩ := not_disjoint_iff.mp h.2
apply ball_subset_ball'
calc
_ ≤ D ^ s J / 4 + dist (c J) x + dist x (c I) := by
rw [add_assoc]; exact add_le_add_left (dist_triangle ..) _
_ ≤ D ^ s J / 4 + 16 * D ^ s J + 16 * D ^ s I := by
gcongr
· exact (mem_ball'.mp xJ).le
· exact (mem_ball.mp xI).le
_ ≤ _ := by
rw [h.1, div_eq_mul_inv, mul_comm _ 4⁻¹, ← distrib_three_right]
exact mul_le_mul_of_nonneg_right (by norm_num) (by positivity)

lemma volume_le_of_kissing (h : J ∈ kissing I) :
volume (ball (c I) (33 * D ^ s I)) ≤ 2 ^ (9 * a) * volume (ball (c J) (D ^ s J / 4)) := by
simp_rw [kissing, Finset.mem_filter, Finset.mem_univ, true_and] at h
obtain ⟨x, xI, xJ⟩ := not_disjoint_iff.mp h.2
have : ball (c I) (33 * D ^ s I) ⊆ ball (c J) (128 * D ^ s J) := by
apply ball_subset_ball'
calc
_ ≤ 33 * D ^ s I + dist (c I) x + dist x (c J) := by
rw [add_assoc]; exact add_le_add_left (dist_triangle ..) _
_ ≤ 33 * D ^ s I + 16 * D ^ s I + 16 * D ^ s J := by
gcongr
· exact (mem_ball'.mp xI).le
· exact (mem_ball.mp xJ).le
_ ≤ _ := by
rw [h.1, ← distrib_three_right]
exact mul_le_mul_of_nonneg_right (by norm_num) (by positivity)
have double := measure_ball_le_pow_two' (μ := volume) (x := c J) (r := D ^ s J / 4) (n := 9)
have A9 : (defaultA a : ℝ≥0) ^ 9 = (2 : ℝ≥0∞) ^ (9 * a) := by
simp only [defaultA]; norm_cast; ring
rw [show (2 : ℝ) ^ 9 * (D ^ s J / 4) = 128 * D ^ s J by ring, A9] at double
exact (measure_mono this).trans double

lemma pairwiseDisjoint_of_kissing :
(kissing I).toSet.PairwiseDisjoint fun i ↦ ball (c i) (D ^ s i / 4) := fun j mj k mk hn ↦ by
apply disjoint_of_subset ball_subset_Grid ball_subset_Grid
simp_rw [Finset.mem_coe, kissing, Finset.mem_filter] at mj mk
exact (eq_or_disjoint (mj.2.1.trans mk.2.1.symm)).resolve_left hn

/-- Lemma 7.2.4. -/
lemma boundary_overlap (I : Grid X) :
Finset.card { J | s J = s I ∧ ¬ Disjoint (ball (c I) (4 * D ^ s I)) (ball (c J) (4 * D ^ s J)) }
≤ 2 ^ (9 * a) := by
sorry
lemma boundary_overlap (I : Grid X) : (kissing I).card ≤ 2 ^ (9 * a) := by
have key : (kissing I).card * volume (ball (c I) (33 * D ^ s I)) ≤
2 ^ (9 * a) * volume (ball (c I) (33 * D ^ s I)) := by
calc
_ = ∑ _ ∈ kissing I, volume (ball (c I) (33 * D ^ s I)) := by
rw [Finset.sum_const, nsmul_eq_mul]
_ ≤ ∑ J ∈ kissing I, 2 ^ (9 * a) * volume (ball (c J) (D ^ s J / 4)) :=
Finset.sum_le_sum fun _ ↦ volume_le_of_kissing
_ = 2 ^ (9 * a) * volume (⋃ J ∈ kissing I, ball (c J) (D ^ s J / 4)) := by
rw [← Finset.mul_sum]; congr
exact (measure_biUnion_finset pairwiseDisjoint_of_kissing fun _ _ ↦ measurableSet_ball).symm
_ ≤ _ := by gcongr; exact iUnion₂_subset fun _ ↦ subset_of_kissing
have vn0 : volume (ball (c I) (33 * D ^ s I)) ≠ 0 := by
refine (measure_ball_pos volume _ ?_).ne'; simp only [defaultD]; positivity
rw [ENNReal.mul_le_mul_right vn0 (measure_ball_ne_top _ _)] at key; norm_cast at key

/-- Lemma 7.2.3. -/
lemma boundary_operator_bound
Expand Down
9 changes: 5 additions & 4 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -524,7 +524,7 @@ \chapter{Proof of Metric Space Carleson, overview}
For each $\fu\in \fU$ and each $\fp\in \fT(\fu)$
we have $\scI(\fp) \ne \scI(\fu)$ and
\begin{equation}\label{forest1}
4\fp\lesssim 1\fu.
4\fp\lesssim \fu.
\end{equation}
For each $\fu \in \fU$ and each $\fp,\fp''\in \fT(\fu)$ and $\fp'\in \fP$
we have
Expand Down Expand Up @@ -2897,7 +2897,7 @@ \section{Proof of the Forest Union Lemma}
$$
B_{\fu}(\fcc(\fu), 1) \subset B_{\fu'}(\fcc(\fu'), 500) \subset B_{\fp}(\fcc(\fp), 4)\,.
$$
Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim 1\fu$, which is \eqref{forest1}.
Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim \fu$, which is \eqref{forest1}.
\end{proof}

\begin{lemma}[forest convex]
Expand Down Expand Up @@ -4387,7 +4387,7 @@ \section{The pointwise tree estimate}

\begin{proof}
Let $s_1 = \underline{\sigma}(\fu, x)$. By definition, there exists a tile $\fp \in \fT(\fu)$ with $\ps(\fp) = s_1$ and $x \in E(\fp)$. Then $x \in \scI(\fp) \cap L$. By \eqref{dyadicproperty} and the definition of $\mathcal{L}(\fT(\fu))$, it follows that $L \subset \scI(\fp)$, in particular $x' \in \scI(\fp)$, so $x \in I_{s_1}(x')$.
Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim 1\fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that
Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim \fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that
$$
d_{\fp}(\fcc(\fu), \tQ(x)) \le 5\,.
$$
Expand All @@ -4399,7 +4399,7 @@ \section{The pointwise tree estimate}
$$
d_{B(x, D^{s_2})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{5a}\,.
$$
Finally, by applying \eqref{seconddb} $2^{100a}$ times, we obtain
Finally, by applying \eqref{seconddb} $100a$ times, we obtain
$$
d_{B(x, D^{s_2-1})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{-95a} < 1\,.
$$
Expand Down Expand Up @@ -4687,6 +4687,7 @@ \section{An auxiliary \texorpdfstring{$L^2$}{L2} tree estimate}
\end{lemma}

\begin{proof}
\leanok
Suppose that $B(c(I), 16 D^{s(I)}) \cap B(c(J), 16 D^{s(J)}) \ne \emptyset$ and $s(I) = s(J)$. Then $B(c(I), 33 D^{s(I)}) \subset B(c(J), 128 D^{s(J)})$. Hence by the doubling property \eqref{doublingx}
$$
2^{9a}\mu(B(c(J), \frac{1}{4}D^{s(J)})) \ge \mu(B(c(I), 33 D^{s(I)}))\,,
Expand Down