Skip to content

Commit

Permalink
some lint fixes
Browse files Browse the repository at this point in the history
  • Loading branch information
fpvandoorn committed Sep 9, 2024
1 parent 66379b2 commit 99828bd
Showing 1 changed file with 16 additions and 24 deletions.
40 changes: 16 additions & 24 deletions Carleson/RealInterpolation.lean
Original file line number Diff line number Diff line change
Expand Up @@ -364,15 +364,15 @@ lemma preservation_positivity_inv_toReal (ht : t ∈ Ioo 0 1) (hp₀ : p₀ > 0)
rcases (eq_or_ne p₀ ⊤) with p₀eq_top | p₀ne_top
· rw [p₀eq_top]
simp only [inv_top, zero_toReal, mul_zero, zero_add]
apply Real.mul_pos
apply _root_.mul_pos
· exact ht.1
· rw [toReal_inv]
apply inv_pos_of_pos
refine exp_toReal_pos hp₁ ?_
rw [p₀eq_top] at hp₀p₁
exact Ne.symm hp₀p₁
· apply add_pos_of_pos_of_nonneg
· apply Real.mul_pos
· apply _root_.mul_pos
· exact (Ioo.one_sub_mem ht).1
· rw [toReal_inv]
apply inv_pos_of_pos
Expand Down Expand Up @@ -661,8 +661,8 @@ lemma ζ_equality₇ (ht : t ∈ Ioo 0 1) (hp₀ : p₀ > 0) (hq₀ : q₀ > 0)
rw [hq₀']
simp only [inv_top, zero_toReal, sub_zero, mul_zero, zero_add]
have obs : p₀.toReal * p.toReal * q.toReal > 0 := by
apply Real.mul_pos
· apply Real.mul_pos
apply _root_.mul_pos
· apply _root_.mul_pos
· refine toReal_pos ?_ ?_
· apply ne_of_gt hp₀
· exact hp₀'
Expand Down Expand Up @@ -1186,7 +1186,7 @@ instance spf_to_tc (spf : ScaledPowerFunction) : ToneCouple where
inv := fun t : ℝ ↦ spf.d * t ^ spf.σ⁻¹
mon := if (spf.σ > 0) then true else false
ran_ton := fun t ht ↦ rpow_pos_of_pos (div_pos ht spf.hd) _
ran_inv := fun t ht ↦ Real.mul_pos spf.hd (rpow_pos_of_pos ht spf.σ⁻¹)
ran_inv := fun t ht ↦ mul_pos spf.hd (rpow_pos_of_pos ht spf.σ⁻¹)
ton_is_ton := by
split <;> rename_i sgn_σ
· simp only [↓reduceIte]
Expand All @@ -1195,7 +1195,7 @@ instance spf_to_tc (spf : ScaledPowerFunction) : ToneCouple where
· apply le_of_lt (div_pos hs spf.hd)
· apply le_of_lt (div_pos ht spf.hd)
· exact div_lt_div_of_pos_right hst spf.hd
· simp only [↓reduceIte]
· simp only [Bool.false_eq_true, ↓reduceIte]
intro s (hs : s > 0) t (ht : t > 0) hst
rcases spf.hσ with σ_pos | σ_neg
· exact False.elim (sgn_σ σ_pos)
Expand Down Expand Up @@ -1497,7 +1497,7 @@ lemma lintegral_scale_constant_halfspace (f: ℝ → ENNReal) {a : ℝ} (h : 0 <
· intro h₁
exact (pos_iff_pos_of_mul_pos h₁).mp h
· intro h₁
exact Real.mul_pos h h₁
exact mul_pos h h₁
rw [h₀]

lemma lintegral_scale_constant_halfspace' {f: ℝ → ENNReal} {a : ℝ} (h : 0 < a) :
Expand Down Expand Up @@ -2126,8 +2126,7 @@ lemma trunc_Lp_Lq_higher [MeasurableSpace E₁] [NormedAddCommGroup E₁] [Borel
refine (rpow_lt_top_iff_of_pos this).mp ?_
have := (estimate_eLpNorm_trunc (a := a) q_ne_top hpq (AEStronglyMeasurable.aemeasurable hf.1))
refine lt_of_le_of_lt this ?_
apply mul_lt_top coe_ne_top
apply ne_of_lt
apply mul_lt_top coe_lt_top
refine (rpow_lt_top_iff_of_pos ?_).mpr hf.2
apply toReal_pos
· exact ne_of_gt hpq.1
Expand All @@ -2143,8 +2142,7 @@ lemma trunc_compl_Lp_Lq_lower [MeasurableSpace E₁] [NormedAddCommGroup E₁] [
refine (rpow_lt_top_iff_of_pos this).mp ?_
refine lt_of_le_of_lt
(estimate_eLpNorm_trunc_compl hp hpq (AEStronglyMeasurable.aemeasurable hf.1) ha ) ?_
apply mul_lt_top coe_ne_top
apply ne_of_lt
apply mul_lt_top coe_lt_top
refine (rpow_lt_top_iff_of_pos ?_).mpr hf.2
exact toReal_pos (ne_of_gt (lt_trans hpq.left hpq.right)) hp

Expand Down Expand Up @@ -2543,12 +2541,11 @@ lemma representationLp {μ : Measure α} [SigmaFinite μ] {f : α → ℝ≥0∞
split_ifs
· rfl
· simp; positivity
_ ≤ ∫⁻ (x : α) in A n, n ^ p ∂μ := by
_ ≤ ∫⁻ (_x : α) in A n, n ^ p ∂μ := by
apply setLIntegral_mono
· exact measurable_const
· intro x hx
unfold_let g
unfold_let A
unfold trunc_cut
gcongr
unfold indicator
Expand All @@ -2558,11 +2555,10 @@ lemma representationLp {μ : Measure α} [SigmaFinite μ] {f : α → ℝ≥0∞
_ = n ^ p * μ (A n) := setLIntegral_const (A n) (↑n ^ p)
_ < ⊤ := by
apply mul_lt_top
· apply rpow_ne_top_of_nonneg
· apply rpow_lt_top_of_nonneg
· linarith
· exact coe_ne_top
· unfold_let A
apply ne_of_lt
exact measure_spanningSets_lt_top μ n
have obs : ∀ n : ℕ, ∫⁻ x : α, (f x) * ((g n x) ^ (p - 1) /
(∫⁻ y : α, ((g n y) ^ (p - 1)) ^ q ∂μ) ^ q⁻¹) ∂μ ≥
Expand Down Expand Up @@ -3004,7 +3000,7 @@ lemma estimate_trnc {p₀ q₀ q : ℝ} {spf : ScaledPowerFunction} {j : Bool}
:= by
apply setLIntegral_congr_fun measurableSet_Ioi
apply ae_of_all
intro s hs
intro s _
rw [ENNReal.rpow_inv_rpow]
· rw [one_div, ← ENNReal.rpow_mul, restrict_to_support_trnc hp₀]
· positivity
Expand Down Expand Up @@ -3066,7 +3062,7 @@ lemma estimate_trnc {p₀ q₀ q : ℝ} {spf : ScaledPowerFunction} {j : Bool}
exact norm_pos_iff'.mpr hfx
· split_ifs with h
· simp only [h, ↓reduceIte] at hpowers; linarith
· simp only [h, ↓reduceIte] at hpowers; linarith
· simp only [h, Bool.false_eq_true, ↓reduceIte] at hpowers; linarith
· rw [← ofReal_rpow_of_nonneg] <;> try positivity
congr
exact Eq.symm norm_toNNReal
Expand Down Expand Up @@ -3294,7 +3290,7 @@ lemma wnorm_eq_zero_iff {f : α → E₁} {p : ℝ≥0∞} [NormedAddCommGroup E
/-! ## Weaktype estimates applied to truncations -/

lemma eLpNorm_trnc_est {f : α → E₁} {j : Bool} {a : ℝ} [NormedAddCommGroup E₁] :
eLpNorm (trnc j f a) p μ ≤ eLpNorm f p μ := eLpNorm_mono fun x ↦ trnc_le_func
eLpNorm (trnc j f a) p μ ≤ eLpNorm f p μ := eLpNorm_mono fun _x ↦ trnc_le_func

-- TODO: remove the subindex 0 here
lemma weaktype_estimate {C₀ : ℝ≥0} {p : ℝ≥0∞} {q : ℝ≥0∞} {f : α → E₁}
Expand Down Expand Up @@ -3975,7 +3971,7 @@ lemma simplify_factor₀ {D : ℝ}
· nth_rw 2 [div_eq_mul_inv]
rw [ENNReal.mul_inv]
· repeat rw [ENNReal.mul_rpow_of_ne_zero _ _ (q.toReal - q₀.toReal)]
· rw [← ENNReal.rpow_neg, ← ENNReal.rpow_neg] <;> try assumption
· rw [← ENNReal.rpow_neg, ← ENNReal.rpow_neg]
repeat rw [← ENNReal.rpow_mul]
repeat rw [← mul_assoc]
rw [simplify_factor_rw_aux₀ (a := C₀ ^ q₀.toReal)]
Expand Down Expand Up @@ -4422,7 +4418,6 @@ lemma simplify_factor_aux₄ [NormedAddCommGroup E₁] (hq₀' : q₀ ≠ ⊤)
(eLpNorm f p μ ^ p.toReal) ^ (t * p₁⁻¹.toReal * q.toReal) = C₀ ^ ((1 - t) * q.toReal) *
C₁ ^ (t * q.toReal) * eLpNorm f p μ ^ q.toReal := by
have hp' : p = p₀ := Eq.symm (interp_exp_eq hp₀p₁ ht hp)
have t_pos := ht.1
have := (Ioo.one_sub_mem ht).1
have p₀pos : p₀ > 0 := hp₀.1
have p₀ne_top : p₀ ≠ ⊤ := ne_top_of_le_ne_top hq₀' hp₀.2
Expand Down Expand Up @@ -4637,11 +4632,8 @@ lemma exists_hasStrongType_real_interpolation_aux₂ {f : α → E₁} [Measurab
have q₁pos : q₁ > 0 := pos_of_rb_Ioc hp₁
have q₀ne_top : q₀ ≠ ⊤ := LT.lt.ne_top hq₀q₁
have p₀ne_top : p₀ ≠ ⊤ := ne_top_of_le_ne_top q₀ne_top hp₀.2
have q₀lt_q_toReal : q₀.toReal < q.toReal :=
preservation_inequality_of_lt₀ ht q₀pos q₁pos hq hq₀q₁
have q_toReal_ne_zero : q.toReal ≠ 0 :=
ne_of_gt <| interp_exp_toReal_pos' ht q₀pos q₁pos hq (Or.inl q₀ne_top)
have hp' : p ∈ Ioo 0 ⊤ := interp_exp_in_Ioo_zero_top ht p₀pos p₁pos (Or.inl p₀ne_top) hp
have p_eq_p₀ : p = p₀ := Eq.symm (interp_exp_eq hp₀p₁ ht hp)
rcases (eq_zero_or_pos (eLpNorm f p μ)) with hF | snorm_pos
· refine le_of_eq_of_le ?_ (zero_le _)
Expand Down Expand Up @@ -4918,7 +4910,7 @@ lemma C_realInterpolation_ENNReal_pos {p₀ p₁ q₀ q₁ p q : ℝ≥0∞} {A
apply ne_of_gt
refine (ofReal_lt_ofReal_iff_of_nonneg ?_).mpr ?_
· rfl
· apply Real.mul_pos
· apply _root_.mul_pos
· exact zero_lt_two
· exact hA
· apply ne_of_gt
Expand Down

0 comments on commit 99828bd

Please sign in to comment.