Skip to content

Commit

Permalink
5.2.9
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Jul 17, 2024
1 parent 627a8d6 commit 9590921
Show file tree
Hide file tree
Showing 3 changed files with 67 additions and 27 deletions.
65 changes: 58 additions & 7 deletions Carleson/DiscreteCarleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -711,11 +711,7 @@ lemma top_tiles : ∑ m ∈ Finset.univ.filter (· ∈ 𝔐 (X := X) k n), volum
_ ≤ ∑ l ∈ Finset.range Mc,
(((l + 1) * 2 ^ (n + 1) - l * 2 ^ (n + 1) : ℕ)) *
layervol (X := X) k n ((l * 2 ^ (n + 1) : ℕ) + 1) := by
conv_lhs =>
enter [2, l]
rw [show (l : ℝ) * 2 ^ (n + 1) = (l * 2 ^ (n + 1) : ℕ) by simp,
show (l + 1 : ℕ) * (2 : ℝ) ^ (n + 1) = ((l + 1) * 2 ^ (n + 1) : ℕ) by simp]
exact Finset.sum_le_sum fun _ _ ↦ lintegral_Ioc_layervol_le
convert Finset.sum_le_sum fun _ _ ↦ lintegral_Ioc_layervol_le <;> simp
_ = 2 ^ (n + 1) * ∑ l ∈ Finset.range Mc, layervol (X := X) k n (l * 2 ^ (n + 1) + 1 : ℕ) := by
rw [Finset.mul_sum]; congr! 2
· rw [← Nat.mul_sub_right_distrib]; simp
Expand Down Expand Up @@ -752,9 +748,64 @@ variable (X) in
def C5_2_9 [ProofData a q K σ₁ σ₂ F G] (n : ℕ) : ℝ≥0 := D ^ (1 - κ * Z * (n + 1))

/-- Lemma 5.2.9 -/
lemma boundary_exception {u : 𝔓 X} (hu : u ∈ 𝔘₁ k n l) :
lemma boundary_exception {u : 𝔓 X} :
volume (⋃ i ∈ 𝓛 (X := X) n u, (i : Set X)) ≤ C5_2_9 X n * volume (𝓘 u : Set X) := by
sorry
rcases (𝓛 n u).eq_empty_or_nonempty with h𝓛 | ⟨i, mi⟩; · simp [h𝓛]
let 𝔛 : Set X := {x ∈ (𝓘 u : Set X) |
infDist x (𝓘 u)ᶜ ≤ 12 * D ^ (-Z * (n + 1) - 1 : ℤ) * D ^ 𝔰 u}
have s𝔛 : ∀ i ∈ 𝓛 n u, (i : Set X) ⊆ 𝔛 := fun i mi x mx ↦ by
rw [𝓛, mem_setOf] at mi; obtain ⟨li, si, nbsi⟩ := mi
have mx' : x ∈ ball (c i) (4 * D ^ s i) := Grid_subset_ball mx; refine ⟨li.1 mx, ?_⟩
rw [not_subset_iff_exists_mem_not_mem] at nbsi; obtain ⟨y, my, ny⟩ := nbsi
rw [mem_ball] at mx' my
calc
_ ≤ dist x y := by apply infDist_le_dist_of_mem; rwa [← mem_compl_iff] at ny
_ ≤ dist x (c i) + dist y (c i) := dist_triangle_right ..
_ ≤ 4 * D ^ s i + 8 * D ^ s i := by gcongr
_ = 12 * D ^ s i := by ring
_ = _ := by
rw [← si, mul_assoc, ← zpow_add₀ (defaultD_pos a).ne']; congr; ring
have Dineq : (D : ℝ) ^ (-S - s (𝓘 u)) ≤ 12 * D ^ (-Z * (n + 1) - 1 : ℤ) := by
rw [𝓛, mem_setOf] at mi; obtain ⟨-, si, -⟩ := mi
have Dppos : 0 < (D : ℝ) ^ 𝔰 u := by simp only [defaultD]; positivity
rw [← mul_le_mul_right Dppos, ← zpow_add₀ (defaultD_pos a).ne',
mul_assoc, ← zpow_add₀ (defaultD_pos a).ne']
change _ ^ (_ - 𝔰 u + 𝔰 u) ≤ _
rw [sub_add_cancel, ← si, show -Z * (n + 1) - 1 + (s i + ↑Z * (n + 1) + 1) = s i by ring]
calc
_ ≤ (D : ℝ) ^ s i := zpow_le_of_le one_le_D (mem_Icc.mp (range_s_subset ⟨i, rfl⟩)).1
_ ≤ _ := by nth_rw 1 [← one_mul (_ ^ _)]; gcongr; norm_num
have Cineq : 2 * (12 * D ^ (-Z * (n + 1) - 1 : ℤ)) ^ κ ≤ (C5_2_9 X n : ℝ) := by
have twelve_le_D : 12 ≤ (D : ℝ) := by
refine (show 12 ≤ (2 : ℝ) ^ 4 by norm_num).trans ?_
norm_cast; refine Nat.pow_le_pow_right zero_lt_two ?_
nlinarith [four_le_a X]
calc
_ ≤ 2 * (D * (D : ℝ) ^ (-Z * (n + 1) - 1 : ℤ)) ^ κ := by
gcongr; rw [defaultκ]; positivity
_ = 2 * (D : ℝ) ^ (-κ * Z * (n + 1)) := by
nth_rw 1 [← zpow_one (D : ℝ), ← zpow_add₀ (defaultD_pos a).ne',
show 1 + (-Z * (n + 1) - 1 : ℤ) = -Z * (n + 1) by ring,
← Real.rpow_intCast_mul D_nonneg]
congr 2; push_cast; ring
_ ≤ D * (D : ℝ) ^ (-κ * Z * (n + 1)) := by
gcongr; exact (show (2 : ℝ) ≤ 12 by norm_num).trans twelve_le_D
_ = _ := by
nth_rw 1 [← Real.rpow_one (D : ℝ), ← Real.rpow_add (defaultD_pos a),
neg_mul, neg_mul, ← sub_eq_add_neg, C5_2_9]
norm_cast
calc
_ ≤ volume 𝔛 := measure_mono (iUnion₂_subset_iff.mpr s𝔛)
_ = ENNReal.ofReal (volume.real 𝔛) :=
(ENNReal.ofReal_toReal (measure_ne_top_of_subset (sep_subset _ fun x ↦ _)
volume_coeGrid_lt_top.ne)).symm
_ ≤ ENNReal.ofReal (2 * (12 * D ^ (-Z * (n + 1) - 1 : ℤ)) ^ κ * volume.real (𝓘 u : Set X)) :=
ENNReal.ofReal_le_ofReal (small_boundary Dineq)
_ ≤ ENNReal.ofReal (C5_2_9 X n * volume.real (𝓘 u : Set X)) :=
ENNReal.ofReal_le_ofReal (mul_le_mul_of_nonneg_right Cineq measureReal_nonneg)
_ = _ := by
rw [ENNReal.ofReal_mul' measureReal_nonneg, ENNReal.ofReal_coe_nnreal,
← ENNReal.ofReal_toReal volume_coeGrid_lt_top.ne]; rfl

/-- Lemma 5.2.10 -/
lemma third_exception : volume (G₃ (X := X)) ≤ 2 ^ (- 4 : ℤ) * volume G := by
Expand Down
3 changes: 3 additions & 0 deletions Carleson/GridStructure.lean
Original file line number Diff line number Diff line change
Expand Up @@ -84,6 +84,9 @@ lemma eq_or_disjoint (hs : s i = s j) : i = j ∨ Disjoint (i : Set X) (j : Set
Or.elim (le_or_disjoint hs.le) (fun ij ↦ Or.elim (le_or_disjoint hs.ge)
(fun ji ↦ Or.inl (le_antisymm ij ji)) (fun h ↦ Or.inr h.symm)) (fun h ↦ Or.inr h)

lemma volume_coeGrid_lt_top : volume (i : Set X) < ⊤ :=
measure_lt_top_of_subset Grid_subset_ball (measure_ball_ne_top _ _)

namespace Grid

/- not sure whether these should be simp lemmas, but that might be required if we want to
Expand Down
26 changes: 6 additions & 20 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2183,6 +2183,7 @@ \section{Proof of the Exceptional Sets Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
% Note(Georges Gonthier): sum should start at 0, not 1
We write the left-hand side of \eqref{eq-musum}
\begin{equation}
Expand Down Expand Up @@ -2290,7 +2291,8 @@ \section{Proof of the Exceptional Sets Lemma}


\begin{proof}
Let $\fu\in \fU_1(k,n,l)$.
\leanok
Let $\fu\in \fU_1(k,n,l)$.
Let $I \in \mathcal{L}(\fu)$. Then we have $s(I) = \ps(\fu) - Z(n+1) - 1$ and $I \subset \scI(\fu)$ and $B(c(I), 8D^{s(I)}) \not \subset \scI(\fu)$.
By \eqref{eq-vol-sp-cube}, the set $I$
is contained in $B(c(I), 4D^{s(I)})$.
Expand All @@ -2311,20 +2313,7 @@ \section{Proof of the Exceptional Sets Lemma}
Using $\kappa<1$ and $D \ge 12$, this proves the lemma.
\end{proof}














\begin{lemma}[third exception]
\begin{lemma}[third exception]
\label{third-exception}
\leanok
\lean{third_exception}
Expand All @@ -2333,11 +2322,8 @@ \section{Proof of the Exceptional Sets Lemma}
\begin{equation}
\mu(G_3)\le 2^{-4} \mu(G)\, .
\end{equation}
\end{lemma}



\begin{proof}
\end{lemma}
\begin{proof}
As each $\fp\in \fL_4(k,n,j)$
is contained in $\cup\mathcal{L}(\fu)$ for some
$\fu\in \fU_1(k,n,l)$, we have
Expand Down

0 comments on commit 9590921

Please sign in to comment.