-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
various redefinitions, partly fix real_line file
- Loading branch information
1 parent
c5708a4
commit 788e0f8
Showing
8 changed files
with
142 additions
and
117 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,51 +1,43 @@ | ||
import Carleson.GridStructure | ||
import Carleson.Psi | ||
-- import Carleson.Proposition2 | ||
-- import Carleson.Proposition3 | ||
|
||
open MeasureTheory Measure NNReal Metric Complex Set Function BigOperators | ||
open MeasureTheory Measure NNReal Metric Complex Set Function BigOperators Bornology | ||
open scoped ENNReal | ||
noncomputable section | ||
|
||
/- The constant used in proposition2_1 -/ | ||
def C2_1 (a : ℝ) (q : ℝ) : ℝ := 2 ^ (440 * a ^ 3) / (q - 1) ^ 4 | ||
/- The constant used in Proposition 2.0.2 -/ | ||
def C2_2 (a : ℝ) (q : ℝ) : ℝ := 2 ^ (440 * a ^ 3) / (q - 1) ^ 4 | ||
|
||
lemma C2_1_pos (a q : ℝ) : C2_1 a q > 0 := sorry | ||
lemma C2_2_pos (a q : ℝ) : C2_2 a q > 0 := sorry | ||
|
||
def D2_1 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry | ||
def D2_2 (a : ℝ) : ℝ := 2 ^ (100 * a ^ 2) | ||
|
||
lemma D2_1_pos (A : ℝ) (τ q : ℝ) (C : ℝ) : D2_1 A τ q C > 0 := sorry | ||
lemma D2_2_pos (a : ℝ) : D2_2 a > 0 := sorry | ||
|
||
def κ2_1 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry | ||
def κ2_2 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ := sorry | ||
|
||
lemma κ2_1_pos (A : ℝ) (τ q : ℝ) (C : ℝ) : κ2_1 A τ q C > 0 := sorry | ||
lemma κ2_2_pos (A : ℝ) (τ q : ℝ) (C : ℝ) : κ2_2 A τ q C > 0 := sorry | ||
|
||
-- this should be `10 * D` or something | ||
def Cψ2_1 (A : ℝ) (τ q : ℝ) (C : ℝ) : ℝ≥0 := sorry | ||
|
||
lemma Cψ2_1_pos (A : ℝ) (τ : ℝ) (C : ℝ) : Cψ2_1 A τ C > 0 := sorry | ||
|
||
/- | ||
variable {X : Type*} {A : ℝ} [MetricSpace X] [DoublingMeasure X A] [Inhabited X] | ||
variable {X : Type*} {a : ℝ} [MetricSpace X] [DoublingMeasure X (2 ^ a)] [Inhabited X] | ||
variable {τ q q' D κ : ℝ} {C₀ C : ℝ} | ||
variable {Θ : Set C(X, ℂ)} [IsCompatible Θ] [IsCancellative τ Θ] [TileStructure Θ D κ C₀] | ||
variable {F G : Set X} {σ σ' : X → ℤ} {Q' : X → C(X, ℂ)} /- Q-tilde in the pdf -/ | ||
variable [CompatibleFunctions ℝ X (2 ^ a)] [IsCancellative X τ] | ||
variable {Q : X → Θ X} {S : ℤ} {o : X} [TileStructure Q D κ C S o] | ||
variable {F G : Set X} {σ₁ σ₂ : X → ℤ} {Q : X → Θ X} | ||
variable (K : X → X → ℂ) [IsCZKernel τ K] | ||
variable {ψ : ℝ → ℝ} | ||
|
||
-- todo: add some conditions that σ and other functions have finite range? | ||
-- todo: fix statement | ||
theorem discrete_carleson | ||
(hA : 1 < A) (hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q') | ||
(hC₀ : 0 < C₀) (hC : C2_1 A τ q C₀ < C) (hD : D2_1 A τ q C₀ < D) | ||
(hκ : κ ∈ Ioo 0 (κ2_1 A τ q C₀)) | ||
(hA : 4 ≤ a) (hτ : τ ∈ Ioo 0 1) (hq : q ∈ Ioc 1 2) (hqq' : q.IsConjExponent q') | ||
-- (hC₀ : 0 < C₀) (hC : C2_2 A τ q C₀ < C) (hD : D2_2 A τ q C₀ < D) | ||
(hκ : κ ∈ Ioo 0 (κ2_2 (2 ^ a) τ q C₀)) | ||
(hF : MeasurableSet F) (hG : MeasurableSet G) | ||
(h2F : volume F ∈ Ioo 0 ∞) (h2G : volume G ∈ Ioo 0 ∞) | ||
(Q'_mem : ∀ x, Q' x ∈ Θ) (m_Q' : Measurable Q') | ||
(m_σ : Measurable σ) (m_σ' : Measurable σ') | ||
(hT : NormBoundedBy (ANCZOperatorLp 2 K) 1) | ||
(hψ : LipschitzWith (Cψ2_1 A τ q C₀) ψ) | ||
(h2ψ : support ψ ⊆ Icc (4 * D)⁻¹ 2⁻¹) (h3ψ : ∀ x > 0, ∑ᶠ s : ℤ, ψ (D ^ s * x) = 1) | ||
(h2F : IsBounded F) (h2G : IsBounded G) | ||
(m_σ₁ : Measurable σ₁) (m_σ₂ : Measurable σ₂) | ||
(hT : HasStrongType (ANCZOperator K) volume volume 2 2 1) | ||
: | ||
∃ G', volume G' ≤ volume G / 4 ∧ ‖∫ x in G \ G', ∑' p, T K Q' σ σ' ψ p F 1 x‖₊ ≤ | ||
C * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by sorry | ||
-/ | ||
∃ G', 2 * volume G' ≤ volume G ∧ ∀ f : X → ℂ, (∀ x, ‖f x‖ ≤ F.indicator 1 x) → | ||
‖∫ x in G \ G', ∑' p, T K σ₁ σ₂ (ψ (D2_2 a)) p F 1 x‖₊ ≤ | ||
C2_2 a q * (volume.real G) ^ (1 / q') * (volume.real F) ^ (1 / q) := by sorry |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.