-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
split the ForestOperator file (#138)
- Loading branch information
1 parent
1eead74
commit 5e49c36
Showing
9 changed files
with
1,095 additions
and
986 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
import Carleson.ForestOperator.QuantativeEstimate | ||
|
||
open ShortVariables TileStructure | ||
variable {X : Type*} {a : ℕ} {q : ℝ} {K : X → X → ℂ} {σ₁ σ₂ : X → ℤ} {F G : Set X} | ||
[MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q D κ S o] | ||
{n j j' : ℕ} {t : Forest X n} {u u₁ u₂ p : 𝔓 X} {x x' : X} {𝔖 : Set (𝔓 X)} | ||
{f f₁ f₂ g g₁ g₂ : X → ℂ} {I J J' L : Grid X} | ||
variable {E' : Type*} [NormedAddCommGroup E'] [NormedSpace ℝ E'] | ||
|
||
noncomputable section | ||
|
||
open Set MeasureTheory Metric Function Complex Bornology TileStructure Classical Filter | ||
open scoped NNReal ENNReal ComplexConjugate | ||
|
||
namespace TileStructure.Forest | ||
|
||
/-! ## Section 7.4 except Lemmas 4-6 -/ | ||
|
||
/-- The definition of `Tₚ*g(x)`, defined above Lemma 7.4.1 -/ | ||
def adjointCarleson (p : 𝔓 X) (f : X → ℂ) (x : X) : ℂ := | ||
∫ y in E p, conj (Ks (𝔰 p) y x) * exp (.I * (Q y y - Q y x)) * f y | ||
|
||
/-- The definition of `T_ℭ*g(x)`, defined at the bottom of Section 7.4 -/ | ||
def adjointCarlesonSum (ℭ : Set (𝔓 X)) (f : X → ℂ) (x : X) : ℂ := | ||
∑ p ∈ {p | p ∈ ℭ}, adjointCarleson p f x | ||
|
||
variable (t) in | ||
/-- The operator `S_{2,𝔲} f(x)`, given above Lemma 7.4.3. -/ | ||
def adjointBoundaryOperator (u : 𝔓 X) (f : X → ℂ) (x : X) : ℝ≥0∞ := | ||
‖adjointCarlesonSum (t u) f x‖₊ + MB volume 𝓑 c𝓑 r𝓑 f x + ‖f x‖₊ | ||
|
||
variable (t u₁ u₂) in | ||
/-- The set `𝔖` defined in the proof of Lemma 7.4.4. | ||
We append a subscript 0 to distinguish it from the section variable. -/ | ||
def 𝔖₀ : Set (𝔓 X) := { p ∈ t u₁ ∪ t u₂ | 2 ^ ((Z : ℝ) * n / 2) ≤ dist_(p) (𝒬 u₁) (𝒬 u₂) } | ||
|
||
lemma _root_.MeasureTheory.AEStronglyMeasurable.adjointCarleson (hf : AEStronglyMeasurable f) : | ||
AEStronglyMeasurable (adjointCarleson p f) := by | ||
refine .integral_prod_right' | ||
(f := fun z ↦ conj (Ks (𝔰 p) z.2 z.1) * exp (Complex.I * (Q z.2 z.2 - Q z.2 z.1)) * f z.2) ?_ | ||
refine .mono_ac (.prod .rfl restrict_absolutelyContinuous) ?_ | ||
refine .mul (.mul ?_ ?_) ?_ | ||
· exact Complex.continuous_conj.comp_aestronglyMeasurable (aestronglyMeasurable_Ks.prod_swap) | ||
· refine Complex.continuous_exp.comp_aestronglyMeasurable (.const_mul (.sub ?_ ?_) _) | ||
· refine Measurable.aestronglyMeasurable ?_ | ||
fun_prop | ||
· refine continuous_ofReal.comp_aestronglyMeasurable ?_ | ||
exact aestronglyMeasurable_Q₂ (X := X) |>.prod_swap | ||
· exact hf.snd | ||
|
||
lemma _root_.MeasureTheory.AEStronglyMeasurable.adjointCarlesonSum {ℭ : Set (𝔓 X)} | ||
(hf : AEStronglyMeasurable f) : | ||
AEStronglyMeasurable (adjointCarlesonSum ℭ f) := | ||
Finset.aestronglyMeasurable_sum _ fun _ _ ↦ hf.adjointCarleson | ||
|
||
/-- Part 1 of Lemma 7.4.1. | ||
Todo: update blueprint with precise properties needed on the function. -/ | ||
lemma adjoint_tile_support1 (hf : IsBounded (range f)) (h2f : HasCompactSupport f) | ||
(h3f : AEStronglyMeasurable f) : | ||
adjointCarleson p f = | ||
(ball (𝔠 p) (5 * D ^ 𝔰 p)).indicator (adjointCarleson p ((𝓘 p : Set X).indicator f)) := by | ||
sorry | ||
|
||
/-- Part 2 of Lemma 7.4.1. | ||
Todo: update blueprint with precise properties needed on the function. -/ | ||
lemma adjoint_tile_support2 (hu : u ∈ t) (hp : p ∈ t u) | ||
(hf : IsBounded (range f)) (h2f : HasCompactSupport f) (h3f : AEStronglyMeasurable f) : | ||
adjointCarleson p f = | ||
(𝓘 p : Set X).indicator (adjointCarleson p ((𝓘 p : Set X).indicator f)) := by | ||
sorry | ||
|
||
/-- The constant used in `adjoint_tree_estimate`. | ||
Has value `2 ^ (155 * a ^ 3)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C7_4_2 (a : ℕ) : ℝ≥0 := 2 ^ (155 * (a : ℝ) ^ 3) | ||
|
||
/-- Lemma 7.4.2. -/ | ||
lemma adjoint_tree_estimate (hu : u ∈ t) (hf : IsBounded (range f)) (h2f : HasCompactSupport f) | ||
(h3f : AEStronglyMeasurable f) : | ||
eLpNorm (adjointCarlesonSum (t u) f) 2 volume ≤ | ||
C7_4_2 a * dens₁ (t u) ^ (2 : ℝ)⁻¹ * eLpNorm f 2 volume := by | ||
sorry | ||
|
||
/-- The constant used in `adjoint_tree_control`. | ||
Has value `2 ^ (156 * a ^ 3)` in the blueprint. -/ | ||
irreducible_def C7_4_3 (a : ℕ) : ℝ≥0 := | ||
C7_4_2 a + CMB (defaultA a) 2 + 1 | ||
|
||
/-- Lemma 7.4.3. -/ | ||
lemma adjoint_tree_control (hu : u ∈ t) (hf : IsBounded (range f)) (h2f : HasCompactSupport f) | ||
(h3f : AEStronglyMeasurable f) : | ||
eLpNorm (adjointBoundaryOperator t u f · |>.toReal) 2 volume ≤ | ||
C7_4_3 a * eLpNorm f 2 volume := by | ||
calc _ ≤ eLpNorm (adjointBoundaryOperator t u f · |>.toReal) 2 volume := by rfl | ||
_ ≤ eLpNorm | ||
((‖adjointCarlesonSum (t u) f ·‖) + (MB volume 𝓑 c𝓑 r𝓑 f · |>.toReal) + (‖f ·‖)) | ||
2 volume := by | ||
refine MeasureTheory.eLpNorm_mono_real fun x ↦ ?_ | ||
simp_rw [Real.norm_eq_abs, ENNReal.abs_toReal, Pi.add_apply] | ||
refine ENNReal.toReal_add_le.trans ?_ | ||
gcongr | ||
· exact ENNReal.toReal_add_le | ||
· rfl | ||
_ ≤ eLpNorm (‖adjointCarlesonSum (t u) f ·‖) 2 volume + | ||
eLpNorm (MB volume 𝓑 c𝓑 r𝓑 f · |>.toReal) 2 volume + | ||
eLpNorm (‖f ·‖) 2 volume := by | ||
refine eLpNorm_add_le ?_ ?_ one_le_two |>.trans ?_ | ||
· exact h3f.adjointCarlesonSum.norm.add <| .maximalFunction_toReal 𝓑_finite.countable | ||
· exact h3f.norm | ||
gcongr | ||
refine eLpNorm_add_le ?_ ?_ one_le_two |>.trans ?_ | ||
· exact h3f.adjointCarlesonSum.norm | ||
· exact .maximalFunction_toReal 𝓑_finite.countable | ||
rfl | ||
_ ≤ eLpNorm (adjointCarlesonSum (t u) f) 2 volume + | ||
eLpNorm (MB volume 𝓑 c𝓑 r𝓑 f · |>.toReal) 2 volume + | ||
eLpNorm f 2 volume := by simp_rw [eLpNorm_norm]; rfl | ||
_ ≤ C7_4_2 a * dens₁ (t u) ^ (2 : ℝ)⁻¹ * eLpNorm f 2 volume + | ||
CMB (defaultA a) 2 * eLpNorm f 2 volume + | ||
eLpNorm f 2 volume := by | ||
gcongr | ||
· exact adjoint_tree_estimate hu hf h2f h3f | ||
· exact hasStrongType_MB 𝓑_finite one_lt_two _ (h2f.memℒp_of_isBounded hf h3f) |>.2 | ||
_ ≤ (C7_4_2 a * (1 : ℝ≥0∞) ^ (2 : ℝ)⁻¹ + CMB (defaultA a) 2 + 1) * eLpNorm f 2 volume := by | ||
simp_rw [add_mul] | ||
gcongr | ||
· exact dens₁_le_one | ||
· simp only [ENNReal.coe_one, one_mul, le_refl] | ||
_ ≤ C7_4_3 a * eLpNorm f 2 volume := by | ||
simp_rw [C7_4_3, ENNReal.coe_add, ENNReal.one_rpow, mul_one, ENNReal.coe_one] | ||
with_reducible rfl | ||
|
||
/-- Part 1 of Lemma 7.4.7. -/ | ||
lemma overlap_implies_distance (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂) | ||
(h2u : 𝓘 u₁ ≤ 𝓘 u₂) (hp : p ∈ t u₁ ∪ t u₂) | ||
(hpu₁ : ¬Disjoint (𝓘 p : Set X) (𝓘 u₁)) : p ∈ 𝔖₀ t u₁ u₂ := by | ||
simp_rw [𝔖₀, mem_setOf, hp, true_and] | ||
wlog plu₁ : 𝓘 p ≤ 𝓘 u₁ generalizing p | ||
· have u₁lp : 𝓘 u₁ ≤ 𝓘 p := (le_or_ge_or_disjoint.resolve_left plu₁).resolve_right hpu₁ | ||
obtain ⟨p', mp'⟩ := t.nonempty hu₁ | ||
have p'lu₁ : 𝓘 p' ≤ 𝓘 u₁ := (t.smul_four_le hu₁ mp').1 | ||
obtain ⟨c, mc⟩ := (𝓘 p').nonempty | ||
specialize this (mem_union_left _ mp') (not_disjoint_iff.mpr ⟨c, mc, p'lu₁.1 mc⟩) p'lu₁ | ||
exact this.trans (Grid.dist_mono (p'lu₁.trans u₁lp)) | ||
have four_Z := four_le_Z (X := X) | ||
have four_le_Zn : 4 ≤ Z * (n + 1) := by rw [← mul_one 4]; exact mul_le_mul' four_Z (by omega) | ||
have four_le_two_pow_Zn : 4 ≤ 2 ^ (Z * (n + 1) - 1) := by | ||
change 2 ^ 2 ≤ _; exact Nat.pow_le_pow_right zero_lt_two (by omega) | ||
have ha : (2 : ℝ) ^ (Z * (n + 1)) - 4 ≥ 2 ^ (Z * n / 2 : ℝ) := | ||
calc | ||
_ ≥ (2 : ℝ) ^ (Z * (n + 1)) - 2 ^ (Z * (n + 1) - 1) := by gcongr; norm_cast | ||
_ = 2 ^ (Z * (n + 1) - 1) := by | ||
rw [sub_eq_iff_eq_add, ← two_mul, ← pow_succ', Nat.sub_add_cancel (by omega)] | ||
_ ≥ 2 ^ (Z * n) := by apply pow_le_pow_right one_le_two; rw [mul_add_one]; omega | ||
_ ≥ _ := by | ||
rw [← Real.rpow_natCast] | ||
apply Real.rpow_le_rpow_of_exponent_le one_le_two; rw [Nat.cast_mul] | ||
exact half_le_self (by positivity) | ||
rcases hp with (c : p ∈ t.𝔗 u₁) | (c : p ∈ t.𝔗 u₂) | ||
· calc | ||
_ ≥ dist_(p) (𝒬 p) (𝒬 u₂) - dist_(p) (𝒬 p) (𝒬 u₁) := by | ||
change _ ≤ _; rw [sub_le_iff_le_add, add_comm]; exact dist_triangle .. | ||
_ ≥ 2 ^ (Z * (n + 1)) - 4 := by | ||
gcongr | ||
· exact (t.lt_dist' hu₂ hu₁ hu.symm c (plu₁.trans h2u)).le | ||
· have : 𝒬 u₁ ∈ ball_(p) (𝒬 p) 4 := | ||
(t.smul_four_le hu₁ c).2 (by convert mem_ball_self zero_lt_one) | ||
rw [@mem_ball'] at this; exact this.le | ||
_ ≥ _ := ha | ||
· calc | ||
_ ≥ dist_(p) (𝒬 p) (𝒬 u₁) - dist_(p) (𝒬 p) (𝒬 u₂) := by | ||
change _ ≤ _; rw [sub_le_iff_le_add, add_comm]; exact dist_triangle_right .. | ||
_ ≥ 2 ^ (Z * (n + 1)) - 4 := by | ||
gcongr | ||
· exact (t.lt_dist' hu₁ hu₂ hu c plu₁).le | ||
· have : 𝒬 u₂ ∈ ball_(p) (𝒬 p) 4 := | ||
(t.smul_four_le hu₂ c).2 (by convert mem_ball_self zero_lt_one) | ||
rw [@mem_ball'] at this; exact this.le | ||
_ ≥ _ := ha | ||
|
||
/-- Part 2 of Lemma 7.4.7. -/ | ||
lemma 𝔗_subset_𝔖₀ (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂) (h2u : 𝓘 u₁ ≤ 𝓘 u₂) : | ||
t u₁ ⊆ 𝔖₀ t u₁ u₂ := fun p mp ↦ by | ||
apply overlap_implies_distance hu₁ hu₂ hu h2u (mem_union_left _ mp) | ||
obtain ⟨c, mc⟩ := (𝓘 p).nonempty | ||
exact not_disjoint_iff.mpr ⟨c, mc, (t.smul_four_le hu₁ mp).1.1 mc⟩ | ||
|
||
end TileStructure.Forest |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import Carleson.ForestOperator.LargeSeparation | ||
import Carleson.ForestOperator.RemainingTiles | ||
|
||
open ShortVariables TileStructure | ||
variable {X : Type*} {a : ℕ} {q : ℝ} {K : X → X → ℂ} {σ₁ σ₂ : X → ℤ} {F G : Set X} | ||
[MetricSpace X] [ProofData a q K σ₁ σ₂ F G] [TileStructure Q D κ S o] | ||
{n j j' : ℕ} {t : Forest X n} {u u₁ u₂ p : 𝔓 X} {x x' : X} {𝔖 : Set (𝔓 X)} | ||
{f f₁ f₂ g g₁ g₂ : X → ℂ} {I J J' L : Grid X} | ||
variable {E' : Type*} [NormedAddCommGroup E'] [NormedSpace ℝ E'] | ||
|
||
noncomputable section | ||
|
||
open Set MeasureTheory Metric Function Complex Bornology TileStructure Classical Filter | ||
open scoped NNReal ENNReal ComplexConjugate | ||
|
||
namespace TileStructure.Forest | ||
|
||
/-! ## Lemmas 7.4.4 -/ | ||
|
||
/-- The constant used in `correlation_separated_trees`. | ||
Has value `2 ^ (550 * a ^ 3 - 3 * n)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C7_4_4 (a n : ℕ) : ℝ≥0 := 2 ^ (550 * (a : ℝ) ^ 3 - 3 * n) | ||
|
||
lemma correlation_separated_trees_of_subset (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂) | ||
(h2u : 𝓘 u₁ ≤ 𝓘 u₂) | ||
(hf₁ : IsBounded (range f₁)) (h2f₁ : HasCompactSupport f₁) | ||
(hf₂ : IsBounded (range f₂)) (h2f₂ : HasCompactSupport f₂) : | ||
‖∫ x, adjointCarlesonSum (t u₁) g₁ x * conj (adjointCarlesonSum (t u₂) g₂ x)‖₊ ≤ | ||
C7_4_4 a n * | ||
eLpNorm | ||
((𝓘 u₁ ∩ 𝓘 u₂ : Set X).indicator (adjointBoundaryOperator t u₁ g₁) · |>.toReal) 2 volume * | ||
eLpNorm | ||
((𝓘 u₁ ∩ 𝓘 u₂ : Set X).indicator (adjointBoundaryOperator t u₂ g₂) · |>.toReal) 2 volume := by | ||
sorry | ||
|
||
/-- Lemma 7.4.4. -/ | ||
lemma correlation_separated_trees (hu₁ : u₁ ∈ t) (hu₂ : u₂ ∈ t) (hu : u₁ ≠ u₂) | ||
(hf₁ : IsBounded (range f₁)) (h2f₁ : HasCompactSupport f₁) | ||
(hf₂ : IsBounded (range f₂)) (h2f₂ : HasCompactSupport f₂) : | ||
‖∫ x, adjointCarlesonSum (t u₁) g₁ x * conj (adjointCarlesonSum (t u₂) g₂ x)‖₊ ≤ | ||
C7_4_4 a n * | ||
eLpNorm | ||
((𝓘 u₁ ∩ 𝓘 u₂ : Set X).indicator (adjointBoundaryOperator t u₁ g₁) · |>.toReal) 2 volume * | ||
eLpNorm | ||
((𝓘 u₁ ∩ 𝓘 u₂ : Set X).indicator (adjointBoundaryOperator t u₂ g₂) · |>.toReal) 2 volume := by | ||
sorry | ||
|
||
|
||
/-! ## Section 7.7 -/ | ||
|
||
/-- The row-decomposition of a tree, defined in the proof of Lemma 7.7.1. | ||
The indexing is off-by-one compared to the blueprint. -/ | ||
def rowDecomp (t : Forest X n) (j : ℕ) : Row X n := sorry | ||
|
||
/-- Part of Lemma 7.7.1 -/ | ||
@[simp] | ||
lemma biUnion_rowDecomp : ⋃ j < 2 ^ n, t.rowDecomp j = (t : Set (𝔓 X)) := by | ||
sorry | ||
|
||
/-- Part of Lemma 7.7.1 -/ | ||
lemma pairwiseDisjoint_rowDecomp : | ||
(Iio (2 ^ n)).PairwiseDisjoint (rowDecomp t · : ℕ → Set (𝔓 X)) := by | ||
sorry | ||
|
||
@[simp] lemma rowDecomp_apply : t.rowDecomp j u = t u := by | ||
sorry | ||
|
||
/-- The constant used in `row_bound`. | ||
Has value `2 ^ (156 * a ^ 3 - n / 2)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C7_7_2_1 (a n : ℕ) : ℝ≥0 := 2 ^ (156 * (a : ℝ) ^ 3 - n / 2) | ||
|
||
/-- The constant used in `indicator_row_bound`. | ||
Has value `2 ^ (257 * a ^ 3 - n / 2)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C7_7_2_2 (a n : ℕ) : ℝ≥0 := 2 ^ (257 * (a : ℝ) ^ 3 - n / 2) | ||
|
||
/-- Part of Lemma 7.7.2. -/ | ||
lemma row_bound (hj : j < 2 ^ n) (hf : IsBounded (range f)) (h2f : HasCompactSupport f) | ||
(h3f : AEStronglyMeasurable f) : | ||
eLpNorm (∑ u ∈ {p | p ∈ rowDecomp t j}, adjointCarlesonSum (t u) f) 2 volume ≤ | ||
C7_7_2_1 a n * eLpNorm f 2 volume := by | ||
sorry | ||
|
||
/-- Part of Lemma 7.7.2. -/ | ||
lemma indicator_row_bound (hj : j < 2 ^ n) (hf : IsBounded (range f)) (h2f : HasCompactSupport f) | ||
(h3f : AEStronglyMeasurable f) : | ||
eLpNorm (∑ u ∈ {p | p ∈ rowDecomp t j}, F.indicator <| adjointCarlesonSum (t u) f) 2 volume ≤ | ||
C7_7_2_2 a n * dens₂ (⋃ u ∈ t, t u) ^ (2 : ℝ)⁻¹ * eLpNorm f 2 volume := by | ||
sorry | ||
|
||
/-- The constant used in `row_correlation`. | ||
Has value `2 ^ (862 * a ^ 3 - 3 * n)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C7_7_3 (a n : ℕ) : ℝ≥0 := 2 ^ (862 * (a : ℝ) ^ 3 - 2 * n) | ||
|
||
/-- Lemma 7.7.3. -/ | ||
lemma row_correlation (hjj' : j < j') (hj' : j' < 2 ^ n) | ||
(hf₁ : IsBounded (range f₁)) (h2f₁ : HasCompactSupport f₁) | ||
(hf₂ : IsBounded (range f₂)) (h2f₂ : HasCompactSupport f₂) : | ||
‖∫ x, (∑ u ∈ {p | p ∈ rowDecomp t j}, adjointCarlesonSum (t u) f₁ x) * | ||
(∑ u ∈ {p | p ∈ rowDecomp t j'}, adjointCarlesonSum (t u) f₂ x)‖₊ ≤ | ||
C7_7_3 a n * eLpNorm f₁ 2 volume * eLpNorm f₂ 2 volume := by | ||
sorry | ||
|
||
variable (t) in | ||
/-- The definition of `Eⱼ` defined above Lemma 7.7.4. -/ | ||
def rowSupport (j : ℕ) : Set X := ⋃ (u ∈ rowDecomp t j) (p ∈ t u), E p | ||
|
||
/-- Lemma 7.7.4 -/ | ||
lemma pairwiseDisjoint_rowSupport : | ||
(Iio (2 ^ n)).PairwiseDisjoint (rowSupport t) := by | ||
sorry | ||
|
||
end TileStructure.Forest | ||
|
||
/-! ## Proposition 2.0.4 -/ | ||
|
||
/-- The constant used in `forest_operator`. | ||
Has value `2 ^ (432 * a ^ 3 - (q - 1) / q * n)` in the blueprint. -/ | ||
-- Todo: define this recursively in terms of previous constants | ||
irreducible_def C2_0_4 (a q : ℝ) (n : ℕ) : ℝ≥0 := 2 ^ (432 * a ^ 3 - (q - 1) / q * n) | ||
|
||
theorem forest_operator {n : ℕ} (𝔉 : Forest X n) {f g : X → ℂ} | ||
(hf : Measurable f) (h2f : ∀ x, ‖f x‖ ≤ F.indicator 1 x) (hg : Measurable g) | ||
(h2g : IsBounded (support g)) : | ||
‖∫ x, conj (g x) * ∑ u ∈ { p | p ∈ 𝔉 }, carlesonSum (𝔉 u) f x‖₊ ≤ | ||
C2_0_4 a q n * (dens₂ (X := X) (⋃ u ∈ 𝔉, 𝔉 u)) ^ (q⁻¹ - 2⁻¹) * | ||
eLpNorm f 2 volume * eLpNorm g 2 volume := by | ||
sorry |
Oops, something went wrong.