Skip to content

Commit

Permalink
prove 5.3.11 for real
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel committed Jul 12, 2024
1 parent 4f04e8f commit 4909ccf
Show file tree
Hide file tree
Showing 2 changed files with 15 additions and 1 deletion.
15 changes: 14 additions & 1 deletion Carleson/DiscreteCarleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -592,7 +592,20 @@ lemma ordConnected_C5 : OrdConnected (ℭ₅ k n j : Set (𝔓 X)) := by

/-- Lemma 5.3.11 -/
lemma dens1_le_dens' {P : Set (𝔓 X)} (hP : P ⊆ TilesAt k) : dens₁ P ≤ dens' k P := by
sorry
rw [dens₁, dens']; gcongr with p' mp' l hl
simp_rw [ENNReal.mul_iSup, iSup_le_iff, mul_div_assoc]; intro p mp sl
suffices p ∈ TilesAt k by
exact le_iSup_of_le p (le_iSup₂_of_le this sl (mul_le_mul' (by norm_cast) le_rfl))
simp_rw [TilesAt, mem_preimage, 𝓒, mem_diff, aux𝓒, mem_setOf]
constructor
· rw [mem_lowerClosure] at mp; obtain ⟨p'', mp'', lp''⟩ := mp
have := mem_of_mem_of_subset mp'' hP
simp_rw [TilesAt, mem_preimage, 𝓒, mem_diff, aux𝓒, mem_setOf] at this
obtain ⟨J, lJ, vJ⟩ := this.1; use J, lp''.1.trans lJ
· by_contra h; obtain ⟨J, lJ, vJ⟩ := h
have := mem_of_mem_of_subset mp' hP
simp_rw [TilesAt, mem_preimage, 𝓒, mem_diff, aux𝓒, mem_setOf] at this
apply absurd _ this.2; use J, sl.1.trans lJ

/-- Lemma 5.3.12 -/
lemma dens1_le {A : Set (𝔓 X)} (hA : A ⊆ ℭ k n) : dens₁ A ≤ 2 ^ (4 * a - n + 1) :=
Expand Down
1 change: 1 addition & 0 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -2627,6 +2627,7 @@ \section{Auxiliary lemmas}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
It suffices to show that for all $\fp'\in \fP'$
and $\lambda\ge 2$ and $\fp\in \fP(\fP')$ with $\lambda \fp' \lesssim \lambda \fp$ we have
\begin{equation}
Expand Down

0 comments on commit 4909ccf

Please sign in to comment.