Skip to content

Commit

Permalink
add lean tags for remainder of 4.1 in blueprint
Browse files Browse the repository at this point in the history
  • Loading branch information
Blizzard_inc committed Jul 19, 2024
1 parent 33fc672 commit 47da35f
Showing 1 changed file with 21 additions and 0 deletions.
21 changes: 21 additions & 0 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1213,6 +1213,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[basic grid structure]
\label{basic-grid-structure}
\uses{cover-big-ball}
\leanok
\lean{I1_prop_1,I3_prop_1,I2_prop_2,I3_prop_2,I3_prop_3_1,I3_prop_3_2}
For each $-S\le k\le S$ and $1\le j\le 3$
the following holds.

Expand All @@ -1234,6 +1236,7 @@ \section{Proof of Grid Existence Lemma}
\end{lemma}

\begin{proof}
\leanok
We prove these statements simultaneously by induction on the ordered set of pairs $(y,k)$. Let $-S\le k\le S$.

We first consider \eqref{disji} for $j=1$. If $k=-S$, disjointedness of the sets $I_1(y,-S)$ follows by definition of $I_1$ and $Y_k$. If $k>-S$, assume $x$ is in $I_1(y_m,k)$ for $m=1,2$. Then, for $m=1,2$, there is $z_m\in Y_{k-1}\cap B(y_m,D^k)$ with $x\in I_3(z_m,k-1)$. Using \eqref{disji} inductively for $j=3$, we conclude $z_1=z_2$. This implies that the balls $B(y_1, D^k)$ and $B(y_2, D^k)$ intersect. By construction of $Y_k$, this implies $y_1=y_2$. This proves \eqref{disji} for $j=1$.
Expand All @@ -1251,6 +1254,8 @@ \section{Proof of Grid Existence Lemma}

\begin{lemma}[cover by cubes]
\label{cover-by-cubes}
\leanok
\lean{cover_by_cubes}
Let $-S\le l\le k\le S$ and
$y\in Y_k$.
We have
Expand All @@ -1259,6 +1264,7 @@ \section{Proof of Grid Existence Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
Let $-S\le l\le k\le S$ and $y\in Y_k$.
If $l=k$, the inclusion \eqref{3coverdyadic}
is true from the definition of set union.
Expand All @@ -1273,6 +1279,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[dyadic property]
\label{dyadic-property}
\uses{basic-grid-structure, cover-by-cubes}
\leanok
\lean{dyadic_property}
Let $-S\le l\le k\le S$ and $y\in Y_k$ and $y'\in Y_l$ with
$I_3(y',l)\cap I_3(y,k)\neq \emptyset$. Then
\begin{equation}
Expand All @@ -1282,6 +1290,7 @@ \section{Proof of Grid Existence Lemma}
\end{lemma}

\begin{proof}
\leanok
Let $l,k,y,y'$ be as in the lemma. Pick $x\in I_3(y',l)\cap I_3(y,k)$. Assume first $l=k$. By \eqref{disji} of \Cref{basic-grid-structure}, we conclude $y'=y$, and thus \eqref{3dyadicproperty}. Now assume $l<k$. By induction, we may assume that the statement of the lemma is proven for $k-1$ in place of $k$.

By \Cref{cover-by-cubes}, there is a $y''\in Y_{k-1}$ such that $x\in I_3(y'',k-1)$. By induction, we have $I_3(y',l)\subset I_3(y'',k-1)$. It remains to prove
Expand All @@ -1302,6 +1311,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[transitive boundary]
\label{transitive-boundary}
\uses{dyadic-property}
\leanok
\lean{transitive_boundary}
Assume $-S\le k''< k'< k\le S$ and
$y''\in Y_{k''}$, $y'\in Y_{k'}$, $y\in Y_k$.
Assume there is $x\in X$ such that
Expand All @@ -1313,6 +1324,7 @@ \section{Proof of Grid Existence Lemma}
\end{lemma}

\begin{proof}
\leanok
As $x\in I_3(y'',k'')\cap I_3(y',k')$ and $k''< k'$, we have by \Cref{dyadic-property} that
$I_3(y'',k'')\subset I_3(y',k')$. Similarly,
$I_3(y',k')\subset I_3(y,k)$.
Expand Down Expand Up @@ -1340,6 +1352,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[small boundary]
\label{small-boundary}
\uses{transitive-boundary}
\leanok
\lean{small_boundary}
Let $K = 2^{4a+1}$. For each $-S+K\le k\le S$ and $y\in Y_k$ we have
\begin{equation}
\label{new-small-boundary}
Expand All @@ -1348,6 +1362,7 @@ \section{Proof of Grid Existence Lemma}
\end{lemma}

\begin{proof}
\leanok
Let $K$ be as in the lemma. Let $-S+K\le k\le S$ and $y\in Y_k$.

Pick $k'$ so that $k-K\le k'\le k$.
Expand Down Expand Up @@ -1416,6 +1431,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[smaller boundary]
\label{smaller-boundary}
\uses{small-boundary}
\leanok
\lean{smaller_boundary}
Let $K = 2^{4a+1}$
and let $n\ge 0$ be an integer. Then
for each $-S+nK\le k\le S$ we have
Expand All @@ -1425,6 +1442,7 @@ \section{Proof of Grid Existence Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
We prove this by induction on $n$. If $n=0$,
both sides of \eqref{very-new-small} are equal to
$\mu(I_3(y,k))$ by \eqref{disji}. If $n=1$, this follows from \Cref{small-boundary}.
Expand All @@ -1448,6 +1466,8 @@ \section{Proof of Grid Existence Lemma}
\begin{lemma}[boundary measure]
\label{boundary-measure}
\uses{smaller-boundary}
\leanok
\lean{boundary_measure}
For each $-S\le k\le S$ and $y\in Y_k$ and $0<t<1$
with $tD^k\ge D^{-S}$ we have
\begin{equation}
Expand All @@ -1456,6 +1476,7 @@ \section{Proof of Grid Existence Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
Let $x\in I_3(y,k)$ with $\rho(x, X \setminus I_3(y,k)) \leq t D^{k}$. Let $K = 2^{4a+1}$ as in \Cref{smaller-boundary}.
Let $n$ be the largest integer such that
$D^{nK} \le \frac{1}{t}$, so that $tD^k \le D^{k-nK}$ and
Expand Down

0 comments on commit 47da35f

Please sign in to comment.