Skip to content

Commit

Permalink
Lemma 7.2.4 (#132)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel authored Sep 24, 2024
1 parent 310e13d commit 43d3f30
Show file tree
Hide file tree
Showing 2 changed files with 69 additions and 9 deletions.
69 changes: 64 additions & 5 deletions Carleson/ForestOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -201,7 +201,7 @@ lemma second_tree_pointwise (hu : u ∈ t) (hL : L ∈ 𝓛 (t u)) (hx : x ∈ L
· unfold defaultD; positivity
_ < _ := by rw [mul_comm]; gcongr
have d1 : dist_{x, D ^ (s₂ - 1)} (𝒬 u) (Q x) < 1 := by
have := le_cdist_iterate (x := x) (r := D ^ (s₂ - 1)) (by sorry) (𝒬 u) (Q x) (100 * a)
have := le_cdist_iterate (x := x) (r := D ^ (s₂ - 1)) (by positivity) (𝒬 u) (Q x) (100 * a)
calc
_ ≤ dist_{x, D ^ s₂} (𝒬 u) (Q x) * 2 ^ (-100 * a : ℤ) := by
rw [neg_mul, zpow_neg, le_mul_inv_iff₀ (by positivity), mul_comm]
Expand Down Expand Up @@ -274,11 +274,70 @@ lemma nontangential_operator_bound
eLpNorm (nontangentialMaximalFunction θ f · |>.toReal) 2 volume ≤ eLpNorm f 2 volume := by
sorry

/-- The set of cubes in Lemma 7.2.4. -/
def kissing (I : Grid X) : Finset (Grid X) :=
{J | s J = s I ∧ ¬Disjoint (ball (c I) (16 * D ^ s I)) (ball (c J) (16 * D ^ s J))}

lemma subset_of_kissing (h : J ∈ kissing I) :
ball (c J) (D ^ s J / 4) ⊆ ball (c I) (33 * D ^ s I) := by
simp_rw [kissing, Finset.mem_filter, Finset.mem_univ, true_and] at h
obtain ⟨x, xI, xJ⟩ := not_disjoint_iff.mp h.2
apply ball_subset_ball'
calc
_ ≤ D ^ s J / 4 + dist (c J) x + dist x (c I) := by
rw [add_assoc]; exact add_le_add_left (dist_triangle ..) _
_ ≤ D ^ s J / 4 + 16 * D ^ s J + 16 * D ^ s I := by
gcongr
· exact (mem_ball'.mp xJ).le
· exact (mem_ball.mp xI).le
_ ≤ _ := by
rw [h.1, div_eq_mul_inv, mul_comm _ 4⁻¹, ← distrib_three_right]
exact mul_le_mul_of_nonneg_right (by norm_num) (by positivity)

lemma volume_le_of_kissing (h : J ∈ kissing I) :
volume (ball (c I) (33 * D ^ s I)) ≤ 2 ^ (9 * a) * volume (ball (c J) (D ^ s J / 4)) := by
simp_rw [kissing, Finset.mem_filter, Finset.mem_univ, true_and] at h
obtain ⟨x, xI, xJ⟩ := not_disjoint_iff.mp h.2
have : ball (c I) (33 * D ^ s I) ⊆ ball (c J) (128 * D ^ s J) := by
apply ball_subset_ball'
calc
_ ≤ 33 * D ^ s I + dist (c I) x + dist x (c J) := by
rw [add_assoc]; exact add_le_add_left (dist_triangle ..) _
_ ≤ 33 * D ^ s I + 16 * D ^ s I + 16 * D ^ s J := by
gcongr
· exact (mem_ball'.mp xI).le
· exact (mem_ball.mp xJ).le
_ ≤ _ := by
rw [h.1, ← distrib_three_right]
exact mul_le_mul_of_nonneg_right (by norm_num) (by positivity)
have double := measure_ball_le_pow_two' (μ := volume) (x := c J) (r := D ^ s J / 4) (n := 9)
have A9 : (defaultA a : ℝ≥0) ^ 9 = (2 : ℝ≥0∞) ^ (9 * a) := by
simp only [defaultA]; norm_cast; ring
rw [show (2 : ℝ) ^ 9 * (D ^ s J / 4) = 128 * D ^ s J by ring, A9] at double
exact (measure_mono this).trans double

lemma pairwiseDisjoint_of_kissing :
(kissing I).toSet.PairwiseDisjoint fun i ↦ ball (c i) (D ^ s i / 4) := fun j mj k mk hn ↦ by
apply disjoint_of_subset ball_subset_Grid ball_subset_Grid
simp_rw [Finset.mem_coe, kissing, Finset.mem_filter] at mj mk
exact (eq_or_disjoint (mj.2.1.trans mk.2.1.symm)).resolve_left hn

/-- Lemma 7.2.4. -/
lemma boundary_overlap (I : Grid X) :
Finset.card { J | s J = s I ∧ ¬ Disjoint (ball (c I) (4 * D ^ s I)) (ball (c J) (4 * D ^ s J)) }
2 ^ (9 * a) := by
sorry
lemma boundary_overlap (I : Grid X) : (kissing I).card ≤ 2 ^ (9 * a) := by
have key : (kissing I).card * volume (ball (c I) (33 * D ^ s I)) ≤
2 ^ (9 * a) * volume (ball (c I) (33 * D ^ s I)) := by
calc
_ = ∑ _ ∈ kissing I, volume (ball (c I) (33 * D ^ s I)) := by
rw [Finset.sum_const, nsmul_eq_mul]
_ ≤ ∑ J ∈ kissing I, 2 ^ (9 * a) * volume (ball (c J) (D ^ s J / 4)) :=
Finset.sum_le_sum fun _ ↦ volume_le_of_kissing
_ = 2 ^ (9 * a) * volume (⋃ J ∈ kissing I, ball (c J) (D ^ s J / 4)) := by
rw [← Finset.mul_sum]; congr
exact (measure_biUnion_finset pairwiseDisjoint_of_kissing fun _ _ ↦ measurableSet_ball).symm
_ ≤ _ := by gcongr; exact iUnion₂_subset fun _ ↦ subset_of_kissing
have vn0 : volume (ball (c I) (33 * D ^ s I)) ≠ 0 := by
refine (measure_ball_pos volume _ ?_).ne'; simp only [defaultD]; positivity
rw [ENNReal.mul_le_mul_right vn0 (measure_ball_ne_top _ _)] at key; norm_cast at key

/-- Lemma 7.2.3. -/
lemma boundary_operator_bound
Expand Down
9 changes: 5 additions & 4 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -524,7 +524,7 @@ \chapter{Proof of Metric Space Carleson, overview}
For each $\fu\in \fU$ and each $\fp\in \fT(\fu)$
we have $\scI(\fp) \ne \scI(\fu)$ and
\begin{equation}\label{forest1}
4\fp\lesssim 1\fu.
4\fp\lesssim \fu.
\end{equation}
For each $\fu \in \fU$ and each $\fp,\fp''\in \fT(\fu)$ and $\fp'\in \fP$
we have
Expand Down Expand Up @@ -2898,7 +2898,7 @@ \section{Proof of the Forest Union Lemma}
$$
B_{\fu}(\fcc(\fu), 1) \subset B_{\fu'}(\fcc(\fu'), 500) \subset B_{\fp}(\fcc(\fp), 4)\,.
$$
Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim 1\fu$, which is \eqref{forest1}.
Together with $\scI(\fp) \subset \scI(\fu') = \scI(\fu)$, this gives $4\fp \lesssim \fu$, which is \eqref{forest1}.
\end{proof}

\begin{lemma}[forest convex]
Expand Down Expand Up @@ -4388,7 +4388,7 @@ \section{The pointwise tree estimate}

\begin{proof}
Let $s_1 = \underline{\sigma}(\fu, x)$. By definition, there exists a tile $\fp \in \fT(\fu)$ with $\ps(\fp) = s_1$ and $x \in E(\fp)$. Then $x \in \scI(\fp) \cap L$. By \eqref{dyadicproperty} and the definition of $\mathcal{L}(\fT(\fu))$, it follows that $L \subset \scI(\fp)$, in particular $x' \in \scI(\fp)$, so $x \in I_{s_1}(x')$.
Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim 1\fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that
Next, let $s_2 = \overline{\sigma}(\fu, x)$ and let $\fp' \in \fT(\fu)$ with $\ps(\fp') = s_2$ and $x \in E(\fp')$. Since $\fp' \in \fT(\fu)$, we have $4\fp' \lesssim \fu$. Since $\tQ(x) \in \fc(\fp')$, it follows that
$$
d_{\fp}(\fcc(\fu), \tQ(x)) \le 5\,.
$$
Expand All @@ -4400,7 +4400,7 @@ \section{The pointwise tree estimate}
$$
d_{B(x, D^{s_2})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{5a}\,.
$$
Finally, by applying \eqref{seconddb} $2^{100a}$ times, we obtain
Finally, by applying \eqref{seconddb} $100a$ times, we obtain
$$
d_{B(x, D^{s_2-1})}(\fcc(\fu), \tQ(x)) \le 5 \cdot 2^{-95a} < 1\,.
$$
Expand Down Expand Up @@ -4688,6 +4688,7 @@ \section{An auxiliary \texorpdfstring{$L^2$}{L2} tree estimate}
\end{lemma}

\begin{proof}
\leanok
Suppose that $B(c(I), 16 D^{s(I)}) \cap B(c(J), 16 D^{s(J)}) \ne \emptyset$ and $s(I) = s(J)$. Then $B(c(I), 33 D^{s(I)}) \subset B(c(J), 128 D^{s(J)})$. Hence by the doubling property \eqref{doublingx}
$$
2^{9a}\mu(B(c(J), \frac{1}{4}D^{s(J)})) \ge \mu(B(c(I), 33 D^{s(I)}))\,,
Expand Down

0 comments on commit 43d3f30

Please sign in to comment.