Skip to content

Commit

Permalink
some cleanup (#117)
Browse files Browse the repository at this point in the history
* Open namespace `MeasureTheory` in various places
* Add `\leanok` to statements of section 7.1
  • Loading branch information
fpvandoorn authored Sep 9, 2024
1 parent f086742 commit 2d168c9
Show file tree
Hide file tree
Showing 15 changed files with 165 additions and 152 deletions.
2 changes: 1 addition & 1 deletion CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@ Below, I will try to give a translation of some notation/conventions. We use mat
| `Kₛ(x, y)` | `Ks s x y` | |
| `T_* f(x)` | `nontangentialOperator K f x` | The associated nontangential Calderon Zygmund operator |
| `T_Q^θ f(x)` | `linearizedNontangentialOperator Q θ K f x` | The linearized associated nontangential Calderon Zygmund operator |
| `T f(x)` | `CarlesonOperator K f x` | The generalized Carleson operator |
| `T f(x)` | `carlesonOperator K f x` | The generalized Carleson operator |
| `T_Q f(x)` | `linearizedCarlesonOperator Q K f x` | The linearized generalized Carleson operator |
| `T_𝓝^θ f(x)` | `nontangentialMaximalFunction K θ f x` | |
| `Tₚ f(x)` | `carlesonOn p f x` | |
Expand Down
12 changes: 6 additions & 6 deletions Carleson/AntichainOperator.lean
Original file line number Diff line number Diff line change
Expand Up @@ -146,12 +146,12 @@ lemma MaximalBoundAntichain {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (·≤
/- simp only [T, indicator, if_pos hxE, mul_ite, mul_zero, ENNReal.coe_le_coe,
← NNReal.coe_le_coe, coe_nnnorm] -/
/- simp only [T, indicator, if_pos hxE]
apply le_trans (MeasureTheory.ennnorm_integral_le_lintegral_ennnorm _)
apply MeasureTheory.lintegral_mono
apply le_trans (ennnorm_integral_le_lintegral_ennnorm _)
apply lintegral_mono
intro z w -/
simp only [carlesonOn, indicator, if_pos hxE]
apply le_trans (MeasureTheory.ennnorm_integral_le_lintegral_ennnorm _)
apply MeasureTheory.lintegral_mono
apply le_trans (ennnorm_integral_le_lintegral_ennnorm _)
apply lintegral_mono
intro z w
simp only [nnnorm_mul, coe_mul, some_eq_coe', Nat.cast_pow,
Nat.cast_ofNat, zpow_neg, mul_ite, mul_zero]
Expand Down Expand Up @@ -194,7 +194,7 @@ lemma MaximalBoundAntichain {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (·≤
_ = (2 : ℝ≥0)^(5*a + 101*a^3) * ⨍⁻ y, ‖f y‖₊ ∂volume.restrict (ball (𝔠 p.1) (8*D ^ 𝔰 p.1)) := by
congr 2

--apply MeasureTheory.Measure.restrict_congr_set
--apply Measure.restrict_congr_set
--refine ae_eq_of_subset_of_measure_ge ?_ ?_ ?_ ?_
--sorry
sorry
Expand Down Expand Up @@ -282,7 +282,7 @@ lemma Dens2Antichain {𝔄 : Finset (𝔓 X)} (h𝔄 : IsAntichain (·≤·) (
apply mul_le_mul_of_nonneg_right _ (zero_le _)
have h2 : (2 : ℝ≥0∞) ^ (107 * a ^ 3) = ‖(2 : ℝ) ^ (107 * a ^ 3)‖₊ := by
simp only [nnnorm_pow, nnnorm_two, ENNReal.coe_pow, coe_ofNat]
rw [h2, ← MeasureTheory.eLpNorm_const_smul]
rw [h2, ← eLpNorm_const_smul]
apply eLpNorm_mono_nnnorm
intro z
have MB_top : MB volume (↑𝔄) 𝔠 (fun 𝔭 ↦ 8 * ↑D ^ 𝔰 𝔭) f z ≠ ⊤ := by
Expand Down
8 changes: 3 additions & 5 deletions Carleson/Classical/CarlesonOnTheRealLine.lean
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,6 @@ import Carleson.Classical.CarlesonOperatorReal
import Carleson.Classical.VanDerCorput

import Mathlib.Analysis.Fourier.AddCircle
import Mathlib.MeasureTheory.Integral.IntervalIntegral
import Mathlib.Analysis.SpecialFunctions.Integrals

noncomputable section

Expand Down Expand Up @@ -596,12 +594,12 @@ lemma carlesonOperatorReal_le_carlesonOperator : T ≤ carlesonOperator K := by
lemma rcarleson {F G : Set ℝ} (hF : MeasurableSet F) (hG : MeasurableSet G)
(f : ℝ → ℂ) (hmf : Measurable f) (hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) :
∫⁻ x in G, T f x ≤
ENNReal.ofReal (C10_0_1 4 2) * (MeasureTheory.volume G) ^ (2 : ℝ)⁻¹ * (MeasureTheory.volume F) ^ (2 : ℝ)⁻¹ := by
ENNReal.ofReal (C10_0_1 4 2) * (volume G) ^ (2 : ℝ)⁻¹ * (volume F) ^ (2 : ℝ)⁻¹ := by
have conj_exponents : Real.IsConjExponent 2 2 := by rw [Real.isConjExponent_iff_eq_conjExponent] <;> norm_num
calc ∫⁻ x in G, T f x
_ ≤ ∫⁻ x in G, carlesonOperator K f x :=
MeasureTheory.lintegral_mono (carlesonOperatorReal_le_carlesonOperator _)
_ ≤ ENNReal.ofReal (C10_0_1 4 2) * (MeasureTheory.volume G) ^ (2 : ℝ)⁻¹ * (MeasureTheory.volume F) ^ (2 : ℝ)⁻¹ :=
lintegral_mono (carlesonOperatorReal_le_carlesonOperator _)
_ ≤ ENNReal.ofReal (C10_0_1 4 2) * (volume G) ^ (2 : ℝ)⁻¹ * (volume F) ^ (2 : ℝ)⁻¹ :=
two_sided_metric_carleson (a := 4) (by norm_num) (by simp) conj_exponents hF hG Hilbert_strong_2_2 f hmf hf

end section
24 changes: 13 additions & 11 deletions Carleson/Classical/CarlesonOperatorReal.lean
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@ import Carleson.Classical.HilbertKernel

noncomputable section

open MeasureTheory

--TODO: avoid this extra definition?
def carlesonOperatorReal (K : ℝ → ℝ → ℂ) (f : ℝ → ℂ) (x : ℝ) : ENNReal :=
⨆ (n : ℤ) (r : ℝ) (_ : 0 < r) (_ : r < 1),
Expand All @@ -24,8 +26,8 @@ lemma annulus_real_eq {x r R: ℝ} (r_nonneg : 0 ≤ r) : {y | dist x y ∈ Set.
· exact ⟨by right; linarith, by constructor <;> linarith⟩

lemma annulus_real_volume {x r R : ℝ} (hr : r ∈ Set.Icc 0 R) :
MeasureTheory.volume {y | dist x y ∈ Set.Ioo r R} = ENNReal.ofReal (2 * (R - r)) := by
rw [annulus_real_eq hr.1, MeasureTheory.measure_union _ measurableSet_Ioo, Real.volume_Ioo, Real.volume_Ioo, ← ENNReal.ofReal_add (by linarith [hr.2]) (by linarith [hr.2])]
volume {y | dist x y ∈ Set.Ioo r R} = ENNReal.ofReal (2 * (R - r)) := by
rw [annulus_real_eq hr.1, measure_union _ measurableSet_Ioo, Real.volume_Ioo, Real.volume_Ioo, ← ENNReal.ofReal_add (by linarith [hr.2]) (by linarith [hr.2])]
ring_nf
rw [Set.disjoint_iff]
intro y hy
Expand Down Expand Up @@ -72,7 +74,7 @@ lemma carlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab
congr with _
congr with _
congr 2
rw [← MeasureTheory.integral_indicator annulus_measurableSet]
rw [← integral_indicator annulus_measurableSet]
rw [this]
set Q : Set ℝ := Rat.cast '' Set.univ with Qdef
have hQ : Dense Q ∧ Countable Q := by
Expand Down Expand Up @@ -108,7 +110,7 @@ lemma carlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab
· apply isOpen_Ioo
· rw [Sdef]
constructor <;> linarith [hr.1]
apply MeasureTheory.continuousAt_of_dominated _ h_bound
apply continuousAt_of_dominated _ h_bound
· have F_bound_on_set : ∀ a ∈ {y | dist x y ∈ Set.Ioo (r / 2) 1},
‖f a * K x a * (Complex.I * ↑n * ↑a).exp‖ ≤ B * ‖2 ^ (2 : ℝ) / (2 * (r / 2))‖ := by
intro a ha
Expand All @@ -130,13 +132,13 @@ lemma carlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab
exact ha.1.le
rw [bound_def, Fdef]
conv => pattern ‖_‖; rw [norm_indicator_eq_indicator_norm]
rw [MeasureTheory.integrable_indicator_iff annulus_measurableSet]
apply MeasureTheory.Measure.integrableOn_of_bounded
rw [integrable_indicator_iff annulus_measurableSet]
apply Measure.integrableOn_of_bounded
· rw [annulus_real_volume (by constructor <;> linarith [hr.1, hr.2])]
exact ENNReal.ofReal_ne_top
· apply ((Measurable.of_uncurry_left (measurable_mul_kernel f_measurable)).norm).aestronglyMeasurable
· --interesting part
rw [MeasureTheory.ae_restrict_iff' annulus_measurableSet]
rw [ae_restrict_iff' annulus_measurableSet]
simp_rw [norm_norm]
apply Filter.Eventually.of_forall
apply F_bound_on_set
Expand Down Expand Up @@ -200,8 +202,8 @@ lemma carlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab
rcases this with h | h
· left; linarith
· right; linarith
rw [MeasureTheory.ae_iff]
exact MeasureTheory.measure_mono_null subset_finite (Finset.measure_zero _ _)
rw [ae_iff]
exact measure_mono_null subset_finite (Finset.measure_zero _ _)
· exact Filter.Eventually.of_forall fun r ↦ ((Measurable.of_uncurry_left
(measurable_mul_kernel f_measurable)).indicator annulus_measurableSet).aestronglyMeasurable
rw [this]
Expand All @@ -210,7 +212,7 @@ lemma carlesonOperatorReal_measurable {f : ℝ → ℂ} (f_measurable : Measurab
intro r _
apply measurable_coe_nnreal_ennreal.comp (measurable_nnnorm.comp _)
rw [← stronglyMeasurable_iff_measurable]
apply MeasureTheory.StronglyMeasurable.integral_prod_right
apply StronglyMeasurable.integral_prod_right
rw [stronglyMeasurable_iff_measurable, Fdef]
exact (measurable_mul_kernel f_measurable).indicator (measurable_dist measurableSet_Ioo)

Expand Down Expand Up @@ -252,7 +254,7 @@ lemma carlesonOperatorReal_mul {f : ℝ → ℂ} {x : ℝ} {a : ℝ} (ha : 0 < a
apply NNReal.eq
simp only [coe_nnnorm, NNReal.coe_mul]
rw [← Real.norm_of_nonneg (@NNReal.zero_le_coe a.toNNReal), ← Complex.norm_real, ← norm_mul,
MeasureTheory.integral_mul_left, Real.coe_toNNReal a ha.le]
← integral_mul_left, Real.coe_toNNReal a ha.le]
congr with y
field_simp
rw [mul_div_cancel_left₀]
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Classical/ClassicalCarleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -214,7 +214,7 @@ theorem carleson {f : ℝ → ℂ} (cont_f : Continuous f) (periodic_f : f.Perio
intro x
conv => pattern S_ _ _ _; rw [partialFourierSum_periodic]
conv => pattern f _; rw [periodic_f]
apply MeasureTheory.ae_restrict_of_ae_eq_of_ae_restrict MeasureTheory.Ico_ae_eq_Icc.symm
apply ae_restrict_of_ae_eq_of_ae_restrict Ico_ae_eq_Icc.symm
rw [zero_add]

-- Show a.e. convergence on [0,2π]
Expand Down
Loading

0 comments on commit 2d168c9

Please sign in to comment.