Skip to content

Commit

Permalink
Lemma 5.4.(1–3) (#74)
Browse files Browse the repository at this point in the history
  • Loading branch information
Parcly-Taxel authored Jul 15, 2024
1 parent f14f197 commit 0e27d0e
Show file tree
Hide file tree
Showing 2 changed files with 134 additions and 10 deletions.
137 changes: 128 additions & 9 deletions Carleson/DiscreteCarleson.lean
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,13 @@ def ℭ₁ (k n j : ℕ) : Set (𝔓 X) :=
lemma ℭ₁_subset_ℭ {k n j : ℕ} : ℭ₁ k n j ⊆ ℭ (X := X) k n := fun t mt ↦ by
rw [ℭ₁, preℭ₁, mem_diff, mem_setOf] at mt; exact mt.1.1

lemma card_𝔅_of_mem_ℭ₁ {k n j : ℕ} {p : 𝔓 X} (hp : p ∈ ℭ₁ k n j) :
(𝔅 k n p).toFinset.card ∈ Ico (2 ^ j) (2 ^ (j + 1)) := by
simp_rw [ℭ₁, mem_diff, preℭ₁, mem_setOf, hp.1.1, true_and, not_le] at hp
constructor
· convert hp.1; ext; simp
· convert hp.2; ext; simp

/-- The subset `𝔏₀(k, n, j)` of `ℭ(k, n)`, given in (5.1.10). -/
def 𝔏₀ (k n : ℕ) : Set (𝔓 X) :=
{ p ∈ ℭ k n | 𝔅 k n p = ∅ }
Expand Down Expand Up @@ -734,19 +741,118 @@ def URel (k n j : ℕ) (u u' : 𝔓 X) : Prop :=

nonrec lemma URel.rfl : URel k n j u u := Or.inl rfl

/-- Lemma 5.4.1, part 1. -/
lemma URel.eq (hu : u ∈ 𝔘₂ k n j) (hu' : u' ∈ 𝔘₂ k n j) (huu' : URel k n j u u') :
𝓘 u = 𝓘 u' := sorry

/-- Lemma 5.4.1, part 2. -/
lemma URel.not_disjoint (hu : u ∈ 𝔘₂ k n j) (hu' : u' ∈ 𝔘₂ k n j) (huu' : URel k n j u u') :
¬ Disjoint (ball_(u) (𝒬 u) 100) (ball_(u') (𝒬 u') 100) := sorry
¬Disjoint (ball_(u) (𝒬 u) 100) (ball_(u') (𝒬 u') 100) := by
by_cases e : u = u'; · rw [e]; simp
simp_rw [URel, e, false_or, 𝔗₁, mem_setOf] at huu'; obtain ⟨p, ⟨mp, np, sl₁⟩, sl₂⟩ := huu'
by_cases e' : 𝓘 p = 𝓘 u'
· refine not_disjoint_iff.mpr ⟨𝒬 u, mem_ball_self (by positivity), ?_⟩
rw [@mem_ball]
have i1 : ball_{𝓘 u} (𝒬 u) 1 ⊆ ball_{𝓘 p} (𝒬 p) 2 := sl₁.2
have i2 : ball_{𝓘 u'} (𝒬 u') 1 ⊆ ball_{𝓘 p} (𝒬 p) 10 := sl₂.2
replace i1 : 𝒬 u ∈ ball_{𝓘 p} (𝒬 p) 2 := i1 (mem_ball_self zero_lt_one)
replace i2 : 𝒬 u' ∈ ball_{𝓘 p} (𝒬 p) 10 := i2 (mem_ball_self zero_lt_one)
rw [e', @mem_ball] at i1 i2
calc
_ ≤ dist_{𝓘 u'} (𝒬 u) (𝒬 p) + dist_{𝓘 u'} (𝒬 u') (𝒬 p) := dist_triangle_right ..
_ < 2 + 10 := add_lt_add i1 i2
_ < 100 := by norm_num
have plu : smul 100 p ≤ smul 100 u := wiggle_order_100 (smul_mono sl₁ le_rfl (by norm_num)) np
have plu' : smul 100 p ≤ smul 100 u' := wiggle_order_100 sl₂ e'
by_contra h
have 𝔅dj : Disjoint (𝔅 k n u) (𝔅 k n u') := by
simp_rw [𝔅, disjoint_left, mem_setOf, not_and]; intro q ⟨_, sl⟩ _
simp_rw [TileLike.le_def, smul_fst, smul_snd, not_and_or] at sl ⊢; right
have := disjoint_left.mp (h.mono_left sl.2) (mem_ball_self zero_lt_one)
rw [not_subset]; use 𝒬 q, mem_ball_self zero_lt_one
have usp : 𝔅 k n u ⊆ 𝔅 k n p := fun q mq ↦ by
rw [𝔅, mem_setOf] at mq ⊢; exact ⟨mq.1, plu.trans mq.2
have u'sp : 𝔅 k n u' ⊆ 𝔅 k n p := fun q mq ↦ by
rw [𝔅, mem_setOf] at mq ⊢; exact ⟨mq.1, plu'.trans mq.2
rw [𝔘₂, mem_setOf, 𝔘₁, mem_setOf] at hu hu'
apply absurd (card_𝔅_of_mem_ℭ₁ mp).2; rw [not_lt]
calc
_ = 2 ^ j + 2 ^ j := Nat.two_pow_succ j
_ ≤ (𝔅 k n u).toFinset.card + (𝔅 k n u').toFinset.card :=
add_le_add (card_𝔅_of_mem_ℭ₁ hu.1.1).1 (card_𝔅_of_mem_ℭ₁ hu'.1.1).1
_ = (𝔅 k n u ∪ 𝔅 k n u').toFinset.card := by
rw [toFinset_union]; refine (Finset.card_union_of_disjoint ?_).symm
simpa using 𝔅dj
_ ≤ _ := by
apply Finset.card_le_card
simp_rw [toFinset_union, subset_toFinset, Finset.coe_union, coe_toFinset, union_subset_iff]
exact ⟨usp, u'sp⟩

/-- Lemma 5.4.1, part 1. -/
lemma URel.eq (hu : u ∈ 𝔘₂ k n j) (hu' : u' ∈ 𝔘₂ k n j) (huu' : URel k n j u u') : 𝓘 u = 𝓘 u' := by
by_cases e : u = u'; · rw [e]
have ndj := not_disjoint hu hu' huu'
have n₁ := (hu.1.2 _ hu'.1.1).mt ndj
rw [disjoint_comm] at ndj
have n₂ := (hu'.1.2 _ hu.1.1).mt ndj
simp_rw [URel, e, false_or, 𝔗₁, mem_setOf] at huu'; obtain ⟨p, ⟨_, _, sl₁⟩, sl₂⟩ := huu'
rcases le_or_lt (𝔰 u) (𝔰 u') with h | h
· exact eq_of_le_of_not_lt (Grid.le_dyadic h sl₁.1 sl₂.1) n₁
· exact (eq_of_le_of_not_lt (Grid.le_dyadic h.le sl₂.1 sl₁.1) n₂).symm

/-- Lemma 5.4.2. -/
lemma equivalenceOn_urel : EquivalenceOn (URel (X := X) k n j) (𝔘₂ k n j) where
refl := fun x _ ↦ .rfl
symm := sorry
trans := sorry
refl _ _ := .rfl
trans {x y z} mx my mz xy yz := by
by_cases xny : x = y; · rwa [xny]
have xye := URel.eq mx my xy
have := URel.not_disjoint mx my xy
rw [not_disjoint_iff] at this
obtain ⟨(ϑ : Θ X), (ϑx : ϑ ∈ ball_{𝓘 x} (𝒬 x) 100), (ϑy : ϑ ∈ ball_{𝓘 y} (𝒬 y) 100)⟩ := this
have yze := URel.eq my mz yz
have := URel.not_disjoint my mz yz
rw [not_disjoint_iff] at this
obtain ⟨(θ : Θ X), (θy : θ ∈ ball_{𝓘 y} (𝒬 y) 100), (θz : θ ∈ ball_{𝓘 z} (𝒬 z) 100)⟩ := this
simp_rw [URel, xny, false_or] at xy; obtain ⟨p, mp, sp⟩ := xy
suffices ball_(z) (𝒬 z) 1 ⊆ ball_(x) (𝒬 x) 500 by
right; use p, mp; obtain ⟨_, np, sl⟩ := mp
have w : ball_(x) (𝒬 x) 500 ⊆ ball_(p) (𝒬 p) 4 := (wiggle_order_500 sl np).2
exact ⟨(yze ▸ xye ▸ sl.1 : 𝓘 p ≤ 𝓘 z), (this.trans w).trans (ball_subset_ball (by norm_num))⟩
intro (q : Θ X) (mq : q ∈ ball_{𝓘 z} (𝒬 z) 1)
rw [@mem_ball] at mq ⊢
calc
_ ≤ dist_(x) q ϑ + dist_(x) ϑ (𝒬 x) := dist_triangle ..
_ < dist_(x) q ϑ + 100 := by gcongr; rwa [@mem_ball] at ϑx
_ ≤ dist_(x) q (𝒬 y) + dist_(x) ϑ (𝒬 y) + 100 := by gcongr; exact dist_triangle_right ..
_ < dist_(x) q (𝒬 y) + 100 + 100 := by gcongr; rwa [@mem_ball, ← xye] at ϑy
_ ≤ dist_(x) q θ + dist_(x) θ (𝒬 y) + 100 + 100 := by gcongr; exact dist_triangle ..
_ < dist_(x) q θ + 100 + 100 + 100 := by gcongr; rwa [@mem_ball, ← xye] at θy
_ ≤ dist_(x) q (𝒬 z) + dist_(x) θ (𝒬 z) + 100 + 100 + 100 := by
gcongr; exact dist_triangle_right ..
_ < 1 + 100 + 100 + 100 + 100 := by
gcongr
· rwa [← yze, ← xye] at mq
· rwa [@mem_ball, ← yze, ← xye] at θz
_ < _ := by norm_num
symm {x y} mx my xy := by
by_cases xny : x = y; · rw [xny]; exact .rfl
have xye := URel.eq mx my xy
have := URel.not_disjoint mx my xy
rw [not_disjoint_iff] at this
obtain ⟨(ϑ : Θ X), (ϑx : ϑ ∈ ball_{𝓘 x} (𝒬 x) 100), (ϑy : ϑ ∈ ball_{𝓘 y} (𝒬 y) 100)⟩ := this
rw [𝔘₂, mem_setOf, not_disjoint_iff] at my; obtain ⟨p, hp, _⟩ := my.2
suffices w : ball_(x) (𝒬 x) 1 ⊆ ball_(y) (𝒬 y) 500 by
right; use p, hp; obtain ⟨_, np, sl⟩ := hp
have : smul 10 p ≤ smul 500 y := (smul_mono_left (by norm_num)).trans (wiggle_order_500 sl np)
exact ⟨(xye ▸ sl.1 : 𝓘 p ≤ 𝓘 x), this.2.trans w⟩
intro (q : Θ X) (mq : q ∈ ball_{𝓘 x} (𝒬 x) 1)
rw [@mem_ball] at mq ⊢
calc
_ ≤ dist_(y) q ϑ + dist_(y) ϑ (𝒬 y) := dist_triangle ..
_ ≤ dist_(y) q (𝒬 x) + dist_(y) ϑ (𝒬 x) + dist_(y) ϑ (𝒬 y) := by
gcongr; apply dist_triangle_right
_ < 1 + 100 + 100 := by
gcongr
· rwa [xye] at mq
· rwa [@mem_ball, xye] at ϑx
· rwa [@mem_ball] at ϑy
_ < _ := by norm_num

/-- `𝔘₃(k, n, j) ⊆ 𝔘₂ k n j` is an arbitary set of representatives of `URel` on `𝔘₂ k n j`,
given above (5.4.5). -/
Expand All @@ -762,7 +868,20 @@ lemma 𝔗₂_subset_ℭ₆ : 𝔗₂ k n j u ⊆ ℭ₆ k n j := inter_subset_l

/-- Lemma 5.4.3 -/
lemma C6_forest : ℭ₆ (X := X) k n j = ⋃ u ∈ 𝔘₃ k n j, 𝔗₂ k n j u := by
sorry
ext p; constructor <;> intro h
· have : p ∈ ℭ₃ k n j := (ℭ₆_subset_ℭ₅ |>.trans ℭ₅_subset_ℭ₄ |>.trans ℭ₄_subset_ℭ₃) h
rw [ℭ₃, mem_diff, 𝔏₂, mem_setOf] at this
have mp := this.1
simp_rw [this.1, true_and, not_not] at this
obtain ⟨u, mu, np, sl⟩ := this
have mp' : p ∈ 𝔗₁ k n j u := by
rw [𝔗₁, mem_setOf]; exact ⟨ℭ₂_subset_ℭ₁ mp, np, sl⟩
have mu' : u ∈ 𝔘₂ k n j := by
rw [𝔘₂, mem_setOf]; exact ⟨mu, not_disjoint_iff.mpr ⟨_, mp', h⟩⟩
let rr := equivalenceOn_urel (X := X) (k := k) (n := n) (j := j)
rw [mem_iUnion₂]; use rr.out u, (rr.out_mem_reprs mu')
refine ⟨h, ?_⟩; rw [mem_iUnion₂]; use u, mu'; rw [mem_iUnion]; use rr.out_rel mu'
· rw [mem_iUnion₂] at h; obtain ⟨_, _, mp, _⟩ := h; exact mp

/- Lemma 5.4.4 seems to be a duplicate of Lemma 5.4.6.
The numberings below might change once we remove Lemma 5.4.4 -/
Expand Down
7 changes: 6 additions & 1 deletion blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -1967,6 +1967,7 @@ \section{Proof of the Exceptional Sets Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
Let
$$
K = 2^{2a+5}\frac{\mu(F)}{\mu(G)}\,.
Expand Down Expand Up @@ -2394,6 +2395,7 @@ \section{Proof of the Exceptional Sets Lemma}
\end{proof}

\begin{proof}[Proof of \Cref{exceptional-set}]
\leanok
\proves{exceptional-set}
Adding up the bounds in Lemmas \ref{first-exception}, \ref{second-exception}, and \ref{third-exception} proves \Cref{exceptional-set}.
\end{proof}
Expand Down Expand Up @@ -2728,13 +2730,14 @@ \section{Proof of the Forest Union Lemma}
\end{lemma}

\begin{proof}
\leanok
Let $\fu, \fu' \in \fU_2(k,n,j)$ with $\fu \sim \fu'$. If $\fu = \fu'$ then the conclusion of the Lemma clearly holds. Else, there exists $\fp \in \fC_1(k,n,j)$ such that $\scI(\fp) \ne \scI(\fu)$ and $2 \fp \lesssim \fu$ and $10 \fp \lesssim \fu'$.
Using \Cref{wiggle-order-1} and \eqref{eq-sc2} of \Cref{wiggle-order-3}, we deduce that
\begin{equation}
\label{eq-Fefferman-trick0}
100 \fp\lesssim 100 \fu\,, \qquad 100 \fp \lesssim 100\fu'\,.
\end{equation}
Now suppose that $B_{\fu}(\fcc(\fu), 100) \cap B_{\fu'}(\fcc(\fu'), 100) = \emptyset$. Then we have $\mathfrak{B}(\fu) \cap \mathfrak{B}(\fu') = \emptyset$, by the definition \eqref{defbfp} of $\mathfrak{B}$ and the definition \eqref{wiggleorder} of $\lesssim$, but also $\mathfrak{B}(\fu) \subset \mathfrak{B}(\fp)$ and $\mathfrak{B}(\fu') \subset \mathfrak{B}(\fp)$, by \eqref{defbfp}, \eqref{wiggleorder} and \eqref{eq-Fefferman-trick0}
Now suppose that $B_{\fu}(\fcc(\fu), 100) \cap B_{\fu'}(\fcc(\fu'), 100) = \emptyset$. Then we have $\mathfrak{B}(\fu) \cap \mathfrak{B}(\fu') = \emptyset$, by the definition \eqref{defbfp} of $\mathfrak{B}$ and the definition \eqref{wiggleorder} of $\lesssim$, but also $\mathfrak{B}(\fu) \subset \mathfrak{B}(\fp)$ and $\mathfrak{B}(\fu') \subset \mathfrak{B}(\fp)$, by \eqref{defbfp}, \eqref{wiggleorder} and \eqref{eq-Fefferman-trick0}.
Hence,
$$
|\mathfrak{B}(\fp)| \geq |\mathfrak{B}(\fu)| + |\mathfrak{B}(\fu')| \geq 2^{j} + 2^j = 2^{j+1}\,,
Expand All @@ -2759,6 +2762,7 @@ \section{Proof of the Forest Union Lemma}
\end{lemma}

\begin{proof}
\leanok
Reflexivity holds by definition.
For transitivity, suppose that
\begin{equation*}
Expand Down Expand Up @@ -2826,6 +2830,7 @@ \section{Proof of the Forest Union Lemma}
\end{equation}
\end{lemma}
\begin{proof}
\leanok
Let $\fp \in \fC_6(k,n,j)$.
By \eqref{eq-C4-def} and \eqref{defc5}, we have $\fp \in \fC_3(k,n,j)$. By \eqref{eq-L2-def} and \eqref{eq-C3-def}, there exists $\fu \in \fU_1(k,n,j)$ with $2\fp \lesssim \fu$ and $\scI(\fp) \ne \scI(\fu)$, that is, with $\fp \in \mathfrak{T}_1(\fu)$. Then $\mathfrak{T}_1(\fu)$ is clearly nonempty, so $\fu \in \fU_2(k,n,j)$. By the definition of $\fU_3(k,n,j)$, there exists $\fu' \in \fU_3(k,n,j)$ with $\fu \sim \fu'$. By \eqref{definesv}, we have $\fp \in \mathfrak{T}_2(\fu')$.
\end{proof}
Expand Down

0 comments on commit 0e27d0e

Please sign in to comment.