Skip to content

Commit

Permalink
Merge remote-tracking branch 'origin/master' into forest-operator-out…
Browse files Browse the repository at this point in the history
…line
  • Loading branch information
fpvandoorn committed Sep 9, 2024
2 parents e43e624 + 242595e commit 010f0b8
Show file tree
Hide file tree
Showing 6 changed files with 494 additions and 397 deletions.
4 changes: 3 additions & 1 deletion Carleson/Discrete/Defs.lean
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,7 @@ def auxℭ (k n : ℕ) : Set (𝔓 X) :=

/-- The partition `ℭ(k, n)` of `𝔓(k)` by density, given in (5.1.7). -/
def ℭ (k n : ℕ) : Set (𝔓 X) :=
{ p ∈ TilesAt k | dens' k {p} ∈ Ioc (2 ^ (4 * a - n)) (2 ^ (4 * a - n + 1)) }
{ p ∈ TilesAt k | dens' k {p} ∈ Ioc (2 ^ (4 * a - n : ℤ)) (2 ^ (4 * a - n + 1 : ℤ)) }

lemma_subset_TilesAt {k n : ℕ} : ℭ k n ⊆ TilesAt (X := X) k := fun t mt ↦ by
rw [ℭ, mem_setOf] at mt; exact mt.1
Expand Down Expand Up @@ -94,6 +94,8 @@ lemma 𝔘₁_subset_ℭ₁ {k n j : ℕ} : 𝔘₁ k n j ⊆ ℭ₁ (X := X) k
def 𝔏₂ (k n j : ℕ) : Set (𝔓 X) :=
{ p ∈ ℭ₂ k n j | ¬ ∃ u ∈ 𝔘₁ k n j, 𝓘 p ≠ 𝓘 u ∧ smul 2 p ≤ smul 1 u }

lemma 𝔏₂_subset_ℭ₂ {k n j : ℕ} : 𝔏₂ k n j ⊆ ℭ₂ (X := X) k n j := fun _ mu ↦ mu.1

/-- The subset `ℭ₃(k, n, j)` of `ℭ₂(k, n, j)`, given in (5.1.16). -/
def ℭ₃ (k n j : ℕ) : Set (𝔓 X) :=
ℭ₂ k n j \ 𝔏₂ k n j
Expand Down
249 changes: 244 additions & 5 deletions Carleson/Discrete/Forests.lean
Original file line number Diff line number Diff line change
Expand Up @@ -128,7 +128,7 @@ lemma dens1_le_dens' {P : Set (𝔓 X)} (hP : P ⊆ TilesAt k) : dens₁ P ≤ d
apply absurd _ this.2; use J, sl.1.trans lJ

/-- Lemma 5.3.12 -/
lemma dens1_le {A : Set (𝔓 X)} (hA : A ⊆ ℭ k n) : dens₁ A ≤ 2 ^ (4 * a - n + 1) :=
lemma dens1_le {A : Set (𝔓 X)} (hA : A ⊆ ℭ k n) : dens₁ A ≤ 2 ^ (4 * a - n + 1 : ℤ) :=
calc
_ ≤ dens' k A := dens1_le_dens' (hA.trans ℭ_subset_TilesAt)
_ ≤ dens' k (ℭ (X := X) k n) := iSup_le_iSup_of_subset hA
Expand Down Expand Up @@ -611,6 +611,158 @@ lemma forest_union {f : X → ℂ} (hf : ∀ x, ‖f x‖ ≤ F.indicator 1 x) :
/-- The set 𝔓_{G\G'} in the blueprint -/
def 𝔓pos : Set (𝔓 X) := { p : 𝔓 X | 0 < volume (𝓘 p ∩ G ∩ G'ᶜ) }

lemma exists_mem_aux𝓒 {i : Grid X} (hi : 0 < volume (G ∩ i)) : ∃ k, i ∈ aux𝓒 (k + 1) := by
have vlt : volume (i : Set X) < ⊤ := volume_coeGrid_lt_top
have one_le_quot : 1 ≤ volume (i : Set X) / volume (G ∩ i) := by
rw [ENNReal.le_div_iff_mul_le (Or.inl hi.ne') (Or.inr vlt.ne), one_mul]
exact measure_mono inter_subset_right
have quot_ne_top : volume (i : Set X) / volume (G ∩ i) ≠ ⊤ := by
rw [Ne, ENNReal.div_eq_top, not_or, not_and_or, not_and_or]
exact ⟨Or.inr hi.ne', Or.inl vlt.ne⟩
have ornz : 0 < (volume (i : Set X) / volume (G ∩ i)).toReal :=
ENNReal.toReal_pos (zero_lt_one.trans_le one_le_quot).ne' quot_ne_top
let k : ℝ := Real.logb 2 (volume (i : Set X) / volume (G ∩ i)).toReal
use ⌊k⌋₊, i, le_rfl
nth_rw 1 [← ENNReal.mul_lt_mul_left (show 2 ^ (⌊k⌋₊ + 1) ≠ 0 by simp) (by simp), ← mul_assoc,
← ENNReal.rpow_natCast, ← ENNReal.rpow_intCast, ← ENNReal.rpow_add _ _ (by simp) (by simp)]
rw [Int.cast_neg, Int.cast_natCast, add_neg_cancel, ENNReal.rpow_zero, one_mul,
← ENNReal.div_lt_iff (Or.inl hi.ne') (Or.inr vlt.ne), ← ENNReal.ofReal_toReal quot_ne_top,
← @ENNReal.ofReal_toReal (2 ^ (⌊k⌋₊ + 1)) (by simp), ENNReal.ofReal_lt_ofReal_iff (by simp),
ENNReal.toReal_pow, ENNReal.toReal_ofNat, ← Real.rpow_natCast,
← Real.logb_lt_iff_lt_rpow one_lt_two ornz]
exact Nat.lt_succ_floor k

lemma exists_k_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) : ∃ k, p ∈ TilesAt k := by
let C : Set ℕ := {k | 𝓘 p ∈ aux𝓒 k}
have Cn : C.Nonempty := by
rw [𝔓pos, mem_setOf] at h
have vpos : 0 < volume (G ∩ 𝓘 p) := by
rw [inter_comm]; exact h.trans_le (measure_mono inter_subset_left)
obtain ⟨k, hk⟩ := exists_mem_aux𝓒 vpos; exact ⟨_, hk⟩
let s : ℕ := WellFounded.min wellFounded_lt _ Cn
have s_mem : s ∈ C := WellFounded.min_mem ..
have s_min : ∀ t ∈ C, s ≤ t := fun t mt ↦ WellFounded.min_le _ mt _
have s_pos : 0 < s := by
by_contra! h; rw [nonpos_iff_eq_zero] at h
simp_rw [h, C, aux𝓒, mem_setOf] at s_mem; apply absurd s_mem; push_neg; intro _ _
rw [Int.neg_ofNat_zero, zpow_zero, one_mul]; exact measure_mono inter_subset_right
use s - 1; rw [TilesAt, mem_preimage, 𝓒, mem_diff, Nat.sub_add_cancel s_pos]
have : ∀ t < s, t ∉ C := fun t mt ↦ by contrapose! mt; exact s_min t mt
exact ⟨s_mem, this (s - 1) (Nat.sub_one_lt_of_lt s_pos)⟩

lemma dens'_le_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) : dens' k {p} ≤ 2 ^ (-k : ℤ) := by
simp_rw [dens', mem_singleton_iff, iSup_iSup_eq_left, iSup_le_iff]; intro l hl p' mp' sl
have vpos : 0 < volume (𝓘 p' : Set X) := by
refine lt_of_lt_of_le ?_ (measure_mono sl.1.1)
rw [𝔓pos, mem_setOf, inter_assoc] at h; exact h.trans_le (measure_mono inter_subset_left)
rw [ENNReal.div_le_iff vpos.ne' volume_coeGrid_lt_top.ne]
calc
_ ≤ volume (E₂ l p') := by
nth_rw 2 [← one_mul (volume _)]; apply mul_le_mul_right'
rw [show 1 = (l : ℝ≥0∞) ^ (0 : ℤ) by simp]; apply ENNReal.zpow_le_of_le
· rw [ENNReal.one_le_coe_iff]; exact one_le_two.trans hl
· linarith [four_le_a X]
_ ≤ _ := by
have E : E₂ l p' ⊆ 𝓘 p' ∩ G := inter_subset_left
rw [TilesAt, mem_preimage, 𝓒, mem_diff] at mp'; replace mp' := mp'.2
rw [aux𝓒, mem_setOf] at mp'; push_neg at mp'; specialize mp' (𝓘 p') le_rfl
rw [inter_comm] at E; exact (measure_mono E).trans mp'

lemma exists_E₂_volume_pos_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) : ∃ r : ℕ, 0 < volume (E₂ r p) := by
apply exists_measure_pos_of_not_measure_iUnion_null
change volume (⋃ n : ℕ, 𝓘 p ∩ G ∩ Q ⁻¹' ball_(p) (𝒬 p) n) ≠ 0
rw [← inter_iUnion]
suffices ⋃ i : ℕ, Q ⁻¹' ball_(p) (𝒬 p) i = univ by
rw [this, inter_univ, ← pos_iff_ne_zero]
rw [𝔓pos, mem_setOf] at h; exact h.trans_le (measure_mono inter_subset_left)
simp_rw [iUnion_eq_univ_iff, mem_preimage, mem_ball]
exact fun x ↦ exists_nat_gt (dist_(p) (Q x) (𝒬 p))

lemma dens'_pos_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) (hp : p ∈ TilesAt k) : 0 < dens' k {p} := by
simp_rw [dens', mem_singleton_iff, iSup_iSup_eq_left, lt_iSup_iff]
obtain ⟨l, hl⟩ := exists_E₂_volume_pos_of_mem_𝔓pos h
use max 2 l, le_max_left _ _, p, hp, le_rfl
simp_rw [ENNReal.div_pos_iff, ne_eq, mul_eq_zero, not_or, ← ne_eq, ← pos_iff_ne_zero]
refine ⟨⟨ENNReal.zpow_pos (by simp) (by simp) _, ?_⟩, volume_coeGrid_lt_top.ne⟩
refine hl.trans_le <| measure_mono <| inter_subset_inter_right _ <| preimage_mono ?_
change ball_(p) (𝒬 p) _ ⊆ ball_(p) (𝒬 p) _
exact ball_subset_ball (by simp)

lemma exists_k_n_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) : ∃ k n, p ∈ ℭ k n ∧ k ≤ n := by
obtain ⟨k, mp⟩ := exists_k_of_mem_𝔓pos h; use k
have dens'_pos : 0 < dens' k {p} := dens'_pos_of_mem_𝔓pos h mp
have dens'_le : dens' k {p} ≤ 2 ^ (-k : ℤ) := dens'_le_of_mem_𝔓pos h
have dens'_lt_top : dens' k {p} < ⊤ :=
dens'_le.trans_lt (ENNReal.zpow_lt_top (by simp) (by simp) _)
have dens'_toReal_pos : 0 < (dens' k {p}).toReal :=
ENNReal.toReal_pos dens'_pos.ne' dens'_lt_top.ne
-- 2 ^ (4 * a - n) < dens' k {p} ≤ 2 ^ (4 * a - n + 1)
-- 4 * a - n < log_2 dens' k {p} ≤ 4 * a - n + 1
-- -n < log_2 dens' k {p} - 4 * a ≤ -n + 1
-- n - 1 ≤ 4 * a - log_2 dens' k {p} < n
-- n ≤ 4 * a - log_2 dens' k {p} + 1 < n + 1
-- n = 4 * a + ⌊-log_2 dens' k {p}⌋ + 1
let v : ℝ := -Real.logb 2 (dens' k {p}).toReal
have klv : k ≤ v := by
rw [le_neg, Real.logb_le_iff_le_rpow one_lt_two dens'_toReal_pos,
show (2 : ℝ) = (2 : ℝ≥0∞).toReal by rfl, ENNReal.toReal_rpow,
ENNReal.toReal_le_toReal dens'_lt_top.ne (by simp)]
exact_mod_cast dens'_le
have klq : k ≤ ⌊v⌋₊ := Nat.le_floor klv
let n : ℕ := 4 * a + ⌊v⌋₊ + 1; use n; refine ⟨⟨mp, ?_⟩, by omega⟩
rw [show 4 * (a : ℤ) - (4 * a + ⌊v⌋₊ + 1 : ℕ) = (-⌊v⌋₊ - 1 : ℤ) by omega, sub_add_cancel, mem_Ioc,
← ENNReal.ofReal_toReal dens'_lt_top.ne, ← ENNReal.rpow_intCast, ← ENNReal.rpow_intCast,
show (2 : ℝ≥0∞) = ENNReal.ofReal (2 : ℝ) by norm_cast,
ENNReal.ofReal_rpow_of_pos zero_lt_two, ENNReal.ofReal_rpow_of_pos zero_lt_two,
ENNReal.ofReal_lt_ofReal_iff dens'_toReal_pos, ENNReal.ofReal_le_ofReal_iff (by positivity),
← Real.logb_le_iff_le_rpow one_lt_two dens'_toReal_pos,
← Real.lt_logb_iff_rpow_lt one_lt_two dens'_toReal_pos,
Int.cast_sub, Int.cast_neg, Int.cast_natCast, Int.cast_one, neg_sub_left, neg_lt, le_neg]
constructor
· rw [add_comm]; exact_mod_cast Nat.lt_succ_floor _
· exact Nat.floor_le ((Nat.cast_nonneg' k).trans klv)

private lemma two_mul_n_add_six_lt : 2 * n + 6 < 2 ^ (n + 3) := by
induction n with
| zero => norm_num
| succ n ih =>
calc
_ = 2 * n + 6 + 2 := by ring
_ < 2 ^ (n + 3) + 2 := by gcongr
_ < 2 ^ (n + 3) + 2 ^ (n + 3) := by omega
_ = _ := by ring

lemma exists_k_n_j_of_mem_𝔓pos (h : p ∈ 𝔓pos (X := X)) :
∃ k n, k ≤ n ∧ (p ∈ 𝔏₀ k n ∨ ∃ j ≤ 2 * n + 3, p ∈ ℭ₁ k n j) := by
obtain ⟨k, n, mp, hkn⟩ := exists_k_n_of_mem_𝔓pos h; use k, n, hkn
rw [𝔓pos, mem_setOf, inter_comm _ G'ᶜ, ← inter_assoc] at h
replace h : 0 < volume (G'ᶜ ∩ (𝓘 p : Set X)) := h.trans_le (measure_mono inter_subset_left)
rw [inter_comm, G', compl_union, compl_union, inter_comm G₁ᶜ, ← inter_assoc, ← inter_assoc] at h
replace h : 0 < volume ((𝓘 p : Set X) ∩ G₂ᶜ) :=
h.trans_le (measure_mono (inter_subset_left.trans inter_subset_left))
obtain ⟨x, mx, nx⟩ := nonempty_of_measure_ne_zero h.ne'
simp_rw [G₂, mem_compl_iff, mem_iUnion] at nx; push_neg at nx; specialize nx n k hkn
let B : ℕ := (Finset.univ.filter (· ∈ 𝔅 k n p)).card
have Blt : B < 2 ^ (2 * n + 4) := by
calc
_ ≤ (Finset.univ.filter fun m ↦ m ∈ 𝔐 k n ∧ x ∈ 𝓘 m).card :=
Finset.card_le_card (Finset.monotone_filter_right _ (Pi.le_def.mpr fun m ⟨m₁, m₂⟩ ↦
⟨m₁, m₂.1.1 mx⟩))
_ = stackSize (𝔐 k n) x := by
simp_rw [stackSize, indicator_apply, Pi.one_apply, Finset.sum_boole, Nat.cast_id,
Finset.filter_filter]; rfl
_ ≤ (2 * n + 6) * 2 ^ (n + 1) := by rwa [setA, mem_setOf, not_lt] at nx
_ < _ := by
rw [show 2 * n + 4 = (n + 3) + (n + 1) by omega, pow_add _ (n + 3)]
exact mul_lt_mul_of_pos_right two_mul_n_add_six_lt (by positivity)
rcases B.eq_zero_or_pos with Bz | Bpos
· simp_rw [B, filter_mem_univ_eq_toFinset, Finset.card_eq_zero, toFinset_eq_empty] at Bz
exact Or.inl ⟨mp, Bz⟩
· right; use Nat.log 2 B; rw [Nat.lt_pow_iff_log_lt one_lt_two Bpos.ne'] at Blt
refine ⟨by omega, (?_ : _ ∧ _ ≤ B), (?_ : ¬(_ ∧ _ ≤ B))⟩
· exact ⟨mp, Nat.pow_log_le_self 2 Bpos.ne'⟩
· rw [not_and, not_le]; exact fun _ ↦ Nat.lt_pow_succ_log_self one_lt_two _

/-- The union occurring in the statement of Lemma 5.5.1 containing 𝔏₀ -/
def ℜ₀ : Set (𝔓 X) := 𝔓pos ∩ ⋃ (n : ℕ) (k ≤ n), 𝔏₀ k n

Expand All @@ -624,8 +776,34 @@ def ℜ₂ : Set (𝔓 X) := 𝔓pos ∩ ⋃ (n : ℕ) (k ≤ n) (j ≤ 2 * n +
def ℜ₃ : Set (𝔓 X) := 𝔓pos ∩ ⋃ (n : ℕ) (k ≤ n) (j ≤ 2 * n + 3) (l ≤ Z * (n + 1)), 𝔏₃ k n j l

/-- Lemma 5.5.1 -/
lemma antichain_decomposition : 𝔓pos (X := X) ∩ 𝔓₁ᶜ = ℜ₀ ∪ ℜ₁ ∪ ℜ₂ ∪ ℜ₃ := by
sorry
lemma antichain_decomposition : 𝔓pos (X := X) ∩ 𝔓₁ᶜ ⊆ ℜ₀ ∪ ℜ₁ ∪ ℜ₂ ∪ ℜ₃ := by
unfold ℜ₀ ℜ₁ ℜ₂ ℜ₃; simp_rw [← inter_union_distrib_left]; intro p ⟨h, mp'⟩
refine ⟨h, ?_⟩; simp_rw [mem_union, mem_iUnion, or_assoc]
have nG₃ : ¬(𝓘 p : Set X) ⊆ G₃ := by
suffices ¬(𝓘 p : Set X) ⊆ G' by contrapose! this; exact subset_union_of_subset_right this _
by_contra hv
rw [𝔓pos, mem_setOf, inter_comm _ G'ᶜ, ← inter_assoc, ← diff_eq_compl_inter,
diff_eq_empty.mpr hv] at h
simp at h
obtain ⟨k, n, hkn, mp⟩ := exists_k_n_j_of_mem_𝔓pos h
rcases mp with ml0 | ⟨j, hj, mc1⟩
· exact Or.inl ⟨n, k, hkn, ml0⟩
· right; by_cases mc2 : p ∉ ℭ₂ k n j
· simp_rw [ℭ₂, layersAbove, mem_diff, not_and, mc1, true_implies, not_not_mem] at mc2
simp_rw [mem_iUnion] at mc2; obtain ⟨l, hl, f⟩ := mc2
exact Or.inl ⟨n, k, hkn, j, hj, l, hl, f⟩
· right; rw [not_not_mem] at mc2; by_cases ml2 : p ∈ 𝔏₂ k n j
· exact Or.inl ⟨n, k, hkn, j, hj, ml2⟩
· have mc3 : p ∈ ℭ₃ k n j := ⟨mc2, ml2⟩
right; by_cases mc4 : p ∉ ℭ₄ k n j
· simp_rw [ℭ₄, layersBelow, mem_diff, not_and, mc3, true_implies, not_not_mem] at mc4
simp_rw [mem_iUnion] at mc4; obtain ⟨l, hl, f⟩ := mc4
exact ⟨n, k, hkn, j, hj, l, hl, f⟩
· apply absurd mp'; simp_rw [mem_compl_iff, not_not_mem, 𝔓₁, mem_iUnion]
refine ⟨n, k, hkn, j, hj, not_not_mem.mp mc4, ?_⟩
contrapose! nG₃
exact le_iSup₂_of_le n k <| le_iSup₂_of_le hkn j <| le_iSup₂_of_le hj p <|
le_iSup_of_le nG₃ subset_rfl

/-- The subset `𝔏₀(k, n, l)` of `𝔏₀(k, n)`, given in Lemma 5.5.3.
We use the name `𝔏₀'` in Lean. The indexing is off-by-one w.r.t. the blueprint -/
Expand All @@ -642,9 +820,70 @@ lemma pairwiseDisjoint_L0' : univ.PairwiseDisjoint (𝔏₀' (X := X) k n) := pa
/-- Part of Lemma 5.5.2 -/
lemma antichain_L0' : IsAntichain (· ≤ ·) (𝔏₀' (X := X) k n l) := isAntichain_minLayer

section L2Antichain

/-- Type synonym of `ℭ₁` to apply the `Preorder` of the proof of Lemma 5.5.3 on. -/
private def ℭ₁' (k n j : ℕ) : Type _ := ℭ₁ (X := X) k n j

private instance : Fintype (ℭ₁' (X := X) k n j) := inferInstanceAs (Fintype (ℭ₁ k n j))

private instance : Preorder (ℭ₁' (X := X) k n j) where
le x y := smul 200 x.1 ≤ smul 200 y.1
le_refl := by simp
le_trans _ _ _ xy yz := by
change smul _ _ ≤ smul _ _ at xy yz ⊢
exact xy.trans yz

/-- Lemma 5.5.3 -/
lemma antichain_L2 : IsAntichain (· ≤ ·) (𝔏₂ (X := X) k n j) :=
sorry
lemma antichain_L2 : IsAntichain (· ≤ ·) (𝔏₂ (X := X) k n j) := by
by_contra h; rw [isAntichain_iff_forall_not_lt] at h; push_neg at h
obtain ⟨p', mp', p, mp, l⟩ := h
have p200 : smul 2 p' ≤ smul 200 p := by
calc
_ ≤ smul (11 / 10 + C2_1_2 a * 200) p' := by
apply smul_mono_left
calc
_ ≤ 11 / 10 + 1 / 512 * (200 : ℝ) := by gcongr; exact C2_1_2_le_inv_512 X
_ ≤ _ := by norm_num
_ ≤ _ := by
refine smul_C2_1_2 _ (by norm_num) ?_ (wiggle_order_11_10 l.le (C5_3_3_le (X := X)))
apply not_lt_of_𝓘_eq_𝓘.mt; rwa [not_not]
have cp : p ∈ ℭ₁ k n j := (𝔏₂_subset_ℭ₂.trans ℭ₂_subset_ℭ₁) mp
let C : Finset (LTSeries (ℭ₁' k n j)) := Finset.univ.filter fun s ↦ s.head = ⟨p, cp⟩
have Cn : C.Nonempty := by
use RelSeries.singleton _ ⟨p, cp⟩
simp_rw [C, Finset.mem_filter, Finset.mem_univ, true_and]; rfl
obtain ⟨z, mz, maxz⟩ := C.exists_max_image (·.length) Cn
simp_rw [C, Finset.mem_filter, Finset.mem_univ, true_and] at mz
by_cases mu : z.last.1 ∈ 𝔘₁ k n j
· have px : z.head ≤ z.last := z.monotone (Fin.zero_le _)
rw [mz] at px
apply absurd mp'; rw [𝔏₂, mem_setOf, not_and_or, not_not]; right; use z.last.1, mu
have : 𝓘 p' < 𝓘 p := lt_of_le_of_ne l.le.1 (not_lt_of_𝓘_eq_𝓘.mt (by rwa [not_not]))
exact ⟨(this.trans_le px.1).ne, (p200.trans px).trans (smul_mono_left (by norm_num))⟩
· simp_rw [𝔘₁, mem_setOf, not_and, z.last.2, true_implies, not_forall, exists_prop] at mu
obtain ⟨q, mq, lq, ndjq⟩ := mu; rw [not_disjoint_iff] at ndjq; obtain ⟨ϑ, mϑ₁, mϑ₂⟩ := ndjq
have cpos : 0 < C2_1_2 a := by rw [C2_1_2]; positivity
have s200 : smul 200 z.last.1 ≤ smul 200 q := by
refine ⟨lq.le, (?_ : ball_(q) (𝒬 q) 200 ⊆ ball_(z.last.1) (𝒬 z.last.1) 200)⟩
intro (r : Θ X) mr
rw [@mem_ball] at mr mϑ₁ mϑ₂ ⊢
calc
_ ≤ dist_(z.last.1) r (𝒬 q) + dist_(z.last.1) (𝒬 q) ϑ + dist_(z.last.1) ϑ (𝒬 z.last.1) :=
dist_triangle4 ..
_ ≤ C2_1_2 a * dist_(q) r (𝒬 q) + C2_1_2 a * dist_(q) (𝒬 q) ϑ + 100 := by
gcongr <;> exact Grid.dist_strictMono lq
_ ≤ C2_1_2 a * (200 + 100) + 100 := by rw [mul_add]; gcongr; rw [dist_comm]; exact mϑ₂.le
_ ≤ (1 / 512) * 300 + 100 := by
rw [show (200 : ℝ) + 100 = 300 by norm_num]; gcongr
exact C2_1_2_le_inv_512 X
_ < _ := by norm_num
have : z.last < ⟨q, mq⟩ := by
refine ⟨s200, (?_ : ¬(smul 200 q ≤ smul 200 z.last.1))⟩
rw [TileLike.le_def, not_and_or]; exact Or.inl (not_le_of_gt lq)
apply absurd maxz; push_neg; use z.snoc ⟨q, mq⟩ this, by simp [C, mz], by simp

end L2Antichain

/-- Part of Lemma 5.5.4 -/
lemma antichain_L1 : IsAntichain (· ≤ ·) (𝔏₁ (X := X) k n j l) := isAntichain_minLayer
Expand Down
2 changes: 1 addition & 1 deletion Carleson/Forest.lean
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ structure Forest (n : ℕ) where
𝓘_ne_𝓘 {u} (hu : u ∈ 𝔘) {p} (hp : p ∈ 𝔗 u) : 𝓘 p ≠ 𝓘 u
smul_four_le {u} (hu : u ∈ 𝔘) {p} (hp : p ∈ 𝔗 u) : smul 4 p ≤ smul 1 u -- (2.0.32)
stackSize_le {x} : stackSize 𝔘 x ≤ 2 ^ n -- (2.0.34), we formulate this a bit differently.
dens₁_𝔗_le {u} (hu : u ∈ 𝔘) : dens₁ (𝔗 u : Set (𝔓 X)) ≤ 2 ^ (4 * a - n + 1) -- (2.0.35)
dens₁_𝔗_le {u} (hu : u ∈ 𝔘) : dens₁ (𝔗 u : Set (𝔓 X)) ≤ 2 ^ (4 * a - n + 1 : ℤ) -- (2.0.35)
lt_dist {u u'} (hu : u ∈ 𝔘) (hu' : u' ∈ 𝔘) (huu' : u ≠ u') {p} (hp : p ∈ 𝔗 u')
(h : 𝓘 p ≤ 𝓘 u) : 2 ^ (Z * (n + 1)) < dist_(p) (𝒬 p) (𝒬 u) -- (2.0.36)
ball_subset {u} (hu : u ∈ 𝔘) {p} (hp : p ∈ 𝔗 u) : ball (𝔠 p) (8 * D ^ 𝔰 p) ⊆ 𝓘 u -- (2.0.37)
Expand Down
Loading

0 comments on commit 010f0b8

Please sign in to comment.