Skip to content

Commit

Permalink
Change the utils.download_emo_models (#199)
Browse files Browse the repository at this point in the history
* Change the utils.download_emo_models

Change utils.download_emo_models(config.mirror, model_name, REPO_ID) to utils.download_emo_models(config.mirror, REPO_ID, model_name)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
  • Loading branch information
Thymustw and pre-commit-ci[bot] authored Nov 27, 2023
1 parent 2c528ce commit badb125
Showing 1 changed file with 162 additions and 161 deletions.
323 changes: 162 additions & 161 deletions emo_gen.py
Original file line number Diff line number Diff line change
@@ -1,162 +1,163 @@
import argparse
import os
from pathlib import Path

import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)

import utils
from config import config


class RegressionHead(nn.Module):
r"""Classification head."""

def __init__(self, config):
super().__init__()

self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)

return x


class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""

def __init__(self, config):
super().__init__(config)

self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()

def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)

return hidden_states, logits


class AudioDataset(Dataset):
def __init__(self, list_of_wav_files, sr, processor):
self.list_of_wav_files = list_of_wav_files
self.processor = processor
self.sr = sr

def __len__(self):
return len(self.list_of_wav_files)

def __getitem__(self, idx):
wav_file = self.list_of_wav_files[idx]
audio_data, _ = librosa.load(wav_file, sr=self.sr)
processed_data = self.processor(audio_data, sampling_rate=self.sr)[
"input_values"
][0]
return torch.from_numpy(processed_data)


def process_func(
x: np.ndarray,
sampling_rate: int,
model: EmotionModel,
processor: Wav2Vec2Processor,
device: str,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
model = model.to(device)
y = processor(x, sampling_rate=sampling_rate)
y = y["input_values"][0]
y = torch.from_numpy(y).unsqueeze(0).to(device)

# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]

# convert to numpy
y = y.detach().cpu().numpy()

return y


def get_emo(path):
wav, sr = librosa.load(path, 16000)
device = config.bert_gen_config.device
return process_func(
np.expand_dims(wav, 0).astype(np.float64),
sr,
model,
processor,
device,
embeddings=True,
).squeeze(0)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, default=config.bert_gen_config.config_path
)
parser.add_argument(
"--num_processes", type=int, default=config.bert_gen_config.num_processes
)
args, _ = parser.parse_known_args()
config_path = args.config
hps = utils.get_hparams_from_file(config_path)

device = config.bert_gen_config.device

model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
if not Path(model_name).joinpath("pytorch_model.bin").exists():
utils.download_emo_models(config.mirror, model_name, REPO_ID)

processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)

lines = []
with open(hps.data.training_files, encoding="utf-8") as f:
lines.extend(f.readlines())

with open(hps.data.validation_files, encoding="utf-8") as f:
lines.extend(f.readlines())

wavnames = [line.split("|")[0] for line in lines]
dataset = AudioDataset(wavnames, 16000, processor)
data_loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16)

with torch.no_grad():
for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
wavname = wavnames[i]
emo_path = wavname.replace(".wav", ".emo.npy")
if os.path.exists(emo_path):
continue
emb = model(data.to(device))[0].detach().cpu().numpy()
np.save(emo_path, emb)

import argparse
import os
from pathlib import Path

import librosa
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)

import utils
from config import config


class RegressionHead(nn.Module):
r"""Classification head."""

def __init__(self, config):
super().__init__()

self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)

def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)

return x


class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""

def __init__(self, config):
super().__init__(config)

self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()

def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)

return hidden_states, logits


class AudioDataset(Dataset):
def __init__(self, list_of_wav_files, sr, processor):
self.list_of_wav_files = list_of_wav_files
self.processor = processor
self.sr = sr

def __len__(self):
return len(self.list_of_wav_files)

def __getitem__(self, idx):
wav_file = self.list_of_wav_files[idx]
audio_data, _ = librosa.load(wav_file, sr=self.sr)
processed_data = self.processor(audio_data, sampling_rate=self.sr)[
"input_values"
][0]
return torch.from_numpy(processed_data)


def process_func(
x: np.ndarray,
sampling_rate: int,
model: EmotionModel,
processor: Wav2Vec2Processor,
device: str,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
model = model.to(device)
y = processor(x, sampling_rate=sampling_rate)
y = y["input_values"][0]
y = torch.from_numpy(y).unsqueeze(0).to(device)

# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]

# convert to numpy
y = y.detach().cpu().numpy()

return y


def get_emo(path):
wav, sr = librosa.load(path, 16000)
device = config.bert_gen_config.device
return process_func(
np.expand_dims(wav, 0).astype(np.float),
sr,
model,
processor,
device,
embeddings=True,
).squeeze(0)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-c", "--config", type=str, default=config.bert_gen_config.config_path
)
parser.add_argument(
"--num_processes", type=int, default=config.bert_gen_config.num_processes
)
args, _ = parser.parse_known_args()
config_path = args.config
hps = utils.get_hparams_from_file(config_path)

device = config.bert_gen_config.device

model_name = "./emotional/wav2vec2-large-robust-12-ft-emotion-msp-dim"
REPO_ID = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
if not Path(model_name).joinpath("pytorch_model.bin").exists():
utils.download_emo_models(config.mirror, REPO_ID, model_name)

processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)

lines = []
with open(hps.data.training_files, encoding="utf-8") as f:
lines.extend(f.readlines())

with open(hps.data.validation_files, encoding="utf-8") as f:
lines.extend(f.readlines())

wavnames = [line.split("|")[0] for line in lines]
dataset = AudioDataset(wavnames, 16000, processor)
data_loader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=16)

with torch.no_grad():
for i, data in tqdm(enumerate(data_loader), total=len(data_loader)):
wavname = wavnames[i]
emo_path = wavname.replace(".wav", ".emo.npy")
if os.path.exists(emo_path):
continue
emb = model(data.to(device))[0].detach().cpu().numpy()
np.save(emo_path, emb)

print("Emo vec 生成完毕!")

0 comments on commit badb125

Please sign in to comment.