Skip to content

EEGChain: An Open-Access EEGLAB-based Toolbox for Building, Managing, Automating, and Reproducing Batch EEG Processing Pipelines

License

Notifications You must be signed in to change notification settings

fardinafdideh/EEGChain

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI

EEGChain: An Open-Access EEGLAB-based Toolbox for Building, Managing, Automating, and Reproducing Batch EEG Processing Pipelines

  • A convenient GUI-based EEG (pre-)processing pipeline management system;
  • Loading pre-stored pipeline configurations to ensure consistent signal processing and reproducibility;
  • Interactive GUI for selection, rearrangement, and customization of processing blocks from the EEGLAB toolbox;
  • Offering both interactive and automated pipeline execution modes, providing flexibility in processing control;
  • Easy creation of pipelines by adding, removing, or rearranging pipeline building blocks;
  • Adjusting the parameters of each pipeline building block through the easy-to-use GUI of EEGChain;
  • The same pipeline can be applied to multiple imported EEG datasets in batch, in an automated way.

ICBME 2024

EEGChain Layout

A) Processing Blocks

B) (Re)-Arranging the Processing Blocks

C) Loading Pre-stored Pipeline Configurations

D) Processing Pipeline

E) Processing Blocks Parameters

F) Naming and Storing the Created Pipeline Configuration

G) Interactive v.s. Automated Pipeline Execution Mode

H) Raw Data Path

I) Dataset Loading

J) Dataset Removing

K) Pipeline Execution

L) Accessing the Results Directory

EEGChain

Slide1

EEGChain Functionalities

Slide2 Slide3 Slide4 Slide5 Slide6 Slide7 Slide8 Slide9 Slide10

How to cite

  • F. Afdideh, M. Boozari, A. Ekhlasi, A. M. Nasrabadi, “EEGChain: An Open-Access EEGLAB-based Toolbox for Building, Managing, Automating, and Reproducing Batch EEG Processing Pipelines,” 31st National and 9th International Iranian Conference on Biomedical Engineering (ICBME), in press, 2024.
  • F. Afdideh, M. Boozari, A. Ekhlasi, A. Motie Nasrabadi, (2024), “fardinafdideh/EEGChain: v0.0”, (v0.0), Zenodo. https://doi.org/10.5281/zenodo.13888486.
  • F. Afdideh, M. Boozari, A. Ekhlasi, A. M. Nasrabadi, “EEG Signal Cleaning Pipeline Management: EEGLAB-based,” in preparation (listed on the EEGLAB website).

About

EEGChain: An Open-Access EEGLAB-based Toolbox for Building, Managing, Automating, and Reproducing Batch EEG Processing Pipelines

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages