-
-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* start silencing messages * start using `skip_if_not_or_load_if_installed` * finish `skip_if_not_or_load_if_installed` * fix failures * hide more messages [skip ci] * remove remaining `requiet()` and style * back to skipping some tests for check_prior --------- Co-authored-by: Indrajeet Patil <[email protected]>
- Loading branch information
1 parent
a00f5a0
commit db2548d
Showing
27 changed files
with
2,416 additions
and
2,164 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,10 +1,6 @@ | ||
requiet <- function(package) { | ||
testthat::skip_if_not_installed(package) | ||
suppressPackageStartupMessages( | ||
require(package, warn.conflicts = FALSE, character.only = TRUE) | ||
) | ||
skip_if_not_or_load_if_installed <- function(package, minimum_version = NULL) { | ||
testthat::skip_if_not_installed(package, minimum_version = minimum_version) | ||
suppressMessages(suppressWarnings(suppressPackageStartupMessages( | ||
require(package, warn.conflicts = FALSE, character.only = TRUE, quietly = TRUE) | ||
))) | ||
} | ||
|
||
# load hard dependencies | ||
library(insight) | ||
library(datawizard) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,86 +1,85 @@ | ||
if (requiet("BayesFactor")) { | ||
test_that("p_direction", { | ||
skip_if_not_or_load_if_installed("BayesFactor") | ||
set.seed(333) | ||
x <- BayesFactor::correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width) | ||
test_that("p_direction", { | ||
expect_equal(as.numeric(p_direction(x)), 0.9225, tolerance = 1) | ||
}) | ||
x <- correlationBF(y = iris$Sepal.Length, x = iris$Sepal.Width) | ||
expect_equal(as.numeric(p_direction(x)), 0.9225, tolerance = 1) | ||
}) | ||
|
||
|
||
# BF t.test one sample --------------------------- | ||
test_that("p_direction: BF t.test one sample", { | ||
skip_if_not_or_load_if_installed("BayesFactor") | ||
data(sleep) | ||
diffScores <- sleep$extra[1:10] - sleep$extra[11:20] | ||
x <- BayesFactor::ttestBF(x = diffScores) | ||
test_that("p_direction", { | ||
expect_equal(as.numeric(p_direction(x)), 0.99675, tolerance = 1) | ||
}) | ||
x <- ttestBF(x = diffScores) | ||
expect_equal(as.numeric(p_direction(x)), 0.99675, tolerance = 1) | ||
}) | ||
|
||
|
||
# BF t.test two samples --------------------------- | ||
test_that("p_direction: BF t.test two samples", { | ||
skip_if_not_or_load_if_installed("BayesFactor") | ||
data(chickwts) | ||
chickwts <- chickwts[chickwts$feed %in% c("horsebean", "linseed"), ] | ||
chickwts$feed <- factor(chickwts$feed) | ||
x <- BayesFactor::ttestBF(formula = weight ~ feed, data = chickwts) | ||
test_that("p_direction", { | ||
expect_equal(as.numeric(p_direction(x)), 1, tolerance = 1) | ||
}) | ||
x <- ttestBF(formula = weight ~ feed, data = chickwts) | ||
expect_equal(as.numeric(p_direction(x)), 1, tolerance = 1) | ||
}) | ||
|
||
# BF t.test meta-analytic --------------------------- | ||
test_that("p_direction: BF t.test meta-analytic", { | ||
skip_if_not_or_load_if_installed("BayesFactor") | ||
t <- c(-.15, 2.39, 2.42, 2.43) | ||
N <- c(100, 150, 97, 99) | ||
x <- BayesFactor::meta.ttestBF(t = t, n1 = N, rscale = 1) | ||
test_that("p_direction", { | ||
expect_equal(as.numeric(p_direction(x)), 0.99975, tolerance = 1) | ||
}) | ||
x <- meta.ttestBF(t = t, n1 = N, rscale = 1) | ||
expect_equal(as.numeric(p_direction(x)), 0.99975, tolerance = 1) | ||
}) | ||
|
||
# # --------------------------- | ||
# # "BF ANOVA" | ||
# data(ToothGrowth) | ||
# ToothGrowth$dose <- factor(ToothGrowth$dose) | ||
# levels(ToothGrowth$dose) <- c("Low", "Medium", "High") | ||
# x <- BayesFactor::anovaBF(len ~ supp*dose, data=ToothGrowth) | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# # --------------------------- | ||
# # "BF ANOVA Random" | ||
# data(puzzles) | ||
# x <- BayesFactor::anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom="ID") | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# | ||
# # --------------------------- | ||
# # "BF lm" | ||
# x <- BayesFactor::lmBF(len ~ supp + dose, data = ToothGrowth) | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# | ||
# x2 <- BayesFactor::lmBF(len ~ supp + dose + supp:dose, data = ToothGrowth) | ||
# x <- x / x2 | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# # --------------------------- | ||
# # "BF ANOVA" | ||
# data(ToothGrowth) | ||
# ToothGrowth$dose <- factor(ToothGrowth$dose) | ||
# levels(ToothGrowth$dose) <- c("Low", "Medium", "High") | ||
# x <- BayesFactor::anovaBF(len ~ supp*dose, data=ToothGrowth) | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# # --------------------------- | ||
# # "BF ANOVA Random" | ||
# data(puzzles) | ||
# x <- BayesFactor::anovaBF(RT ~ shape*color + ID, data = puzzles, whichRandom="ID") | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# | ||
# # --------------------------- | ||
# # "BF lm" | ||
# x <- BayesFactor::lmBF(len ~ supp + dose, data = ToothGrowth) | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
# | ||
# | ||
# x2 <- BayesFactor::lmBF(len ~ supp + dose + supp:dose, data = ToothGrowth) | ||
# x <- x / x2 | ||
# test_that("p_direction", { | ||
# expect_equal(as.numeric(p_direction(x)), 91.9, tol=0.1) | ||
# }) | ||
|
||
|
||
test_that("rope_range", { | ||
x <- BayesFactor::lmBF(len ~ supp + dose, data = ToothGrowth) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
test_that("rope_range", { | ||
skip_if_not_or_load_if_installed("BayesFactor") | ||
x <- lmBF(len ~ supp + dose, data = ToothGrowth) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
|
||
x <- BayesFactor::ttestBF( | ||
ToothGrowth$len[ToothGrowth$supp == "OJ"], | ||
ToothGrowth$len[ToothGrowth$supp == "VC"] | ||
) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
x <- ttestBF( | ||
ToothGrowth$len[ToothGrowth$supp == "OJ"], | ||
ToothGrowth$len[ToothGrowth$supp == "VC"] | ||
) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
|
||
x <- BayesFactor::ttestBF(formula = len ~ supp, data = ToothGrowth) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
x <- ttestBF(formula = len ~ supp, data = ToothGrowth) | ||
expect_equal(rope_range(x)[2], sd(ToothGrowth$len) / 10) | ||
|
||
# else | ||
x <- BayesFactor::correlationBF(ToothGrowth$len, ToothGrowth$dose) | ||
expect_equal(rope_range(x, verbose = FALSE), c(-0.05, 0.05)) | ||
}) | ||
} | ||
# else | ||
x <- correlationBF(ToothGrowth$len, ToothGrowth$dose) | ||
expect_equal(rope_range(x, verbose = FALSE), c(-0.05, 0.05)) | ||
}) |
Oops, something went wrong.