Photonic mode solver with a nice interface and output.
- semi-vectorial and fully vectorial options,
- simple structure drawing,
- automated data saving and plotting via Gnuplot,
- some limited (at this stage) data processing (finding MFD of fundamental mode), and
- easily extensible library
The documentation for this project can be found here.
- Ex1: Semi-vectorial mode solving of a ridge waveguide
- Ex2: Fully vectorial mode solving of an anisotropic material waveguide
- Ex3: Grating-coupler period
- Ex4: Mode Hybridisation In SOI
- Ex6: Directional Coupler 3dB Length In SOI
The following example finds the first two modes of a waveguide with the following, arbitrary, parameters:
- thin-film thickness: 500nm
- waveguide height: 400nm,
- waveguide width: 500nm,
- refractive index of waveguide: 3,
- refractive index of substrate: 1.4,
- refractive index of cladding: 1, and
- wavelength: 1550nm.
import modesolverpy.mode_solver as ms
import modesolverpy.structure as st
import numpy as np
# All units are relative. [um] were chosen in this case.
x_step = 0.02
y_step = 0.02
wg_height = 0.4
wg_width = 0.5
sub_height = 0.5
sub_width = 2.
clad_height = 0.5
n_sub = 1.4
n_wg = 3.
n_clad = 1.
film_thickness = 0.5
wavelength = 1.55
angle = 75.
structure = st.RidgeWaveguide(wavelength,
x_step,
y_step,
wg_height,
wg_width,
sub_height,
sub_width,
clad_height,
n_sub,
n_wg,
angle,
n_clad,
film_thickness)
structure.write_to_file('example_structure_1.dat')
mode_solver = ms.ModeSolverSemiVectorial(2, semi_vectorial_method='Ey')
mode_solver.solve(structure)
mode_solver.write_modes_to_file('example_modes_1.dat')
The following looks at a contrived ridge waveguide in Z-cut KTP.
The simulation outputs:
- 5 plots for each refractive index axis (n_xx, n_xy, n_yx, n_yy and n_zz),
- 48 plots for Ex, Ey, Ez, Hx, Hy and Hz,
- 8 effective index values, one for each mode,
- a wavelength sweep of the waveguide (plotting n_eff vs wavelength for each mode),
- whether a mode is qTE or qTM and the percentage overlap with TE and TM, and
- the group velocity of the mode.
The waveguide parameters are:
- thin-film thickness: 1.2um,
- waveguide height: 800nm,
- waveguide width: 1.2um,
- refractive index of waveguide: used Sellmeier equations to get n_xx, n_yy, n_zz at 1550nm,
- refractive index of substrate: used Sellmeier equation to get SiO2 at 1550nm,
- refractive index of cladding: 1, and
- wavelength: 1550nm.
import modesolverpy.mode_solver as ms
import modesolverpy.structure as st
import opticalmaterialspy as mat
import numpy as np
wl = 1.55
x_step = 0.06
y_step = 0.06
wg_height = 0.8
wg_width = 1.8
sub_height = 1.0
sub_width = 4.
clad_height = 1.0
film_thickness = 1.2
angle = 60.
def struct_func(n_sub, n_wg, n_clad):
return st.RidgeWaveguide(wl, x_step, y_step, wg_height, wg_width,
sub_height, sub_width, clad_height,
n_sub, n_wg, angle, n_clad, film_thickness)
n_sub = mat.SiO2().n(wl)
n_wg_xx = mat.Ktp('x').n(wl)
n_wg_yy = mat.Ktp('y').n(wl)
n_wg_zz = mat.Ktp('z').n(wl)
n_clad = mat.Air().n()
struct_xx = struct_func(n_sub, n_wg_xx, n_clad)
struct_yy = struct_func(n_sub, n_wg_yy, n_clad)
struct_zz = struct_func(n_sub, n_wg_zz, n_clad)
struct_ani = st.StructureAni(struct_xx, struct_yy, struct_zz)
struct_ani.write_to_file()
solver = ms.ModeSolverFullyVectorial(8)
solver.solve(struct_ani)
solver.write_modes_to_file()
solver.solve_ng(struct_ani, 1.55, 0.01)
solver.solve_sweep_wavelength(struct_ani, np.linspace(1.501, 1.60, 21))
The group velocity at 1550nm for each mode is:
# modes_full_vec/ng.dat
# Mode idx, Group index
0,1.776
1,1.799
2,1.826
3,1.847
4,1.841
5,1.882
6,1.872
7,1.871
Only the first 4 (out of 8) modes are shown, and only the E-fields are shown (not H-fields). For the rest of the images, look in the example folder or run the script.
A_{x,y,z} give the percentage power of that particular E-field component with respect to the total of all components.
Mode types:
# modes_full_vec/mode_info
# Mode idx, Mode type, % in major direction, n_eff
0,qTE,97.39,1.643
1,qTM,92.54,1.640
2,qTE,90.60,1.576
3,qTM,91.41,1.571
4,qTE,89.48,1.497
5,qTM,86.70,1.475
6,qTE,89.47,1.447
7,qTM,68.35,1.437
Analytic calculation of the grating coupler period for various duty-cycles in SOI.
Seems to match well with the periods in Taillaert et al., Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides, IOP Science, 2006.
import modesolverpy.mode_solver as ms
import modesolverpy.structure as st
import modesolverpy.design as de
import opticalmaterialspy as mat
import numpy as np
wls = [1.5, 1.55, 1.6]
x_step = 0.05
y_step = 0.05
etch_depth = 0.07
wg_width = 10
sub_height = 0.5
sub_width = 14.
clad_height = 0.5
film_thickness = 0.22
polarisation = 'TE'
dcs = np.linspace(20, 80, 61) / 100
ed1 = etch_depth
ft1 = film_thickness
ed2 = ft1 - ed1
ft2 = ed2
periods = []
periods.append(dcs)
for wl in wls:
ngc = []
for ed, ft in [(ed1, ft1), (ed2, ft2)]:
def struct_func(n_sub, n_wg, n_clad):
return st.RidgeWaveguide(wl, x_step, y_step, ed, wg_width,
sub_height, sub_width, clad_height,
n_sub, n_wg, None, n_clad, ft)
n_sub = mat.SiO2().n(wl)
n_wg_xx = 3.46
n_wg_yy = 3.46
n_wg_zz = 3.46
n_clad = mat.Air().n()
struct_xx = struct_func(n_sub, n_wg_xx, n_clad)
struct_yy = struct_func(n_sub, n_wg_yy, n_clad)
struct_zz = struct_func(n_sub, n_wg_zz, n_clad)
struct_ani = st.StructureAni(struct_xx, struct_yy, struct_zz)
#struct_ani.write_to_file()
solver = ms.ModeSolverFullyVectorial(4)
solver.solve(struct_ani)
#solver.write_modes_to_file()
if polarisation == 'TE':
ngc.append(np.round(np.real(solver.n_effs_te), 4)[0])
elif polarisation == 'TM':
ngc.append(np.round(np.real(solver.n_effs_tm), 4)[0])
period = de.grating_coupler_period(wl, dcs*ngc[0]+(1-dcs)*ngc[1], n_clad, 8, 1)
periods.append(period)
filename = 'dc-sweep-%s-%inm-etch-%i-film.dat' % (polarisation, etch_depth*1000, film_thickness*1000)
np.savetxt(filename, np.array(periods).T, delimiter=',', header=','.join([str(val) for val in wls]))
print(np.c_[periods])
Simulation of mode hybridisation in 220nm thick fully-etched SOI ridge waveguides.
Results look the same as those found in Daoxin Dai and Ming Zhang, "Mode hybridization and conversion in silicon-on-insulator nanowires with angled sidewalls," Opt. Express 23, 32452-32464 (2015).
import modesolverpy.mode_solver as ms
import modesolverpy.structure as st
import opticalmaterialspy as mat
import numpy as np
wl = 1.55
x_step = 0.02
y_step = 0.02
etch_depth = 0.22
wg_widths = np.arange(0.3, 2., 0.05)
sub_height = 1.
sub_width = 4.
clad_height = 1.
film_thickness = 0.22
n_sub = mat.SiO2().n(wl)
n_clad = mat.Air().n(wl)
n_wg = mat.RefractiveIndexWeb(
'https://refractiveindex.info/?shelf=main&book=Si&page=Li-293K').n(wl)
r = []
for w in wg_widths:
r.append(
st.RidgeWaveguide(wl, x_step, y_step, etch_depth, w, sub_height,
sub_width, clad_height, n_sub, n_wg, None, n_clad,
film_thickness))
r[0].write_to_file('start_n_profile.dat')
r[-1].write_to_file('end_n_profile.dat')
solver = ms.ModeSolverFullyVectorial(6)
solver.solve_sweep_structure(r, wg_widths, x_label='Taper width', fraction_mode_list=[1,2])
solver.write_modes_to_file()
Analytic calculation of 3dB coupling length into two parallel SOI waveguides with a varying gap at 3 different TE wavelengths.
An example refractive index profile for the two waveguides spaced 200nm is shown.
import modesolverpy.mode_solver as ms
import modesolverpy.structure as st
import modesolverpy.design as de
import opticalmaterialspy as mat
import numpy as np
import tqdm
wls = [1.5, 1.55, 1.6]
x_step = 0.02
y_step = 0.02
etch_depth = 0.22
wg_width = 0.44
sub_height = 0.5
sub_width = 2.
clad_height = 0.5
film_thickness = 0.22
gaps = np.linspace(0.1, 0.5, 11)
for wl in wls:
lengths = []
n_sub = mat.SiO2().n(wl)
n_clad = mat.Air().n(wl)
n_wg = 3.476
for gap in tqdm.tqdm(gaps):
r = st.WgArray(wl, x_step, y_step, etch_depth, [wg_width, wg_width], gap,
sub_height, sub_width, clad_height, n_sub, n_wg, None)
#r.write_to_file()
solver = ms.ModeSolverFullyVectorial(2)
solver.solve(r)
n1 = solver.n_effs_te[0]
n2 = solver.n_effs_te[1]
lengths.append(de.directional_coupler_lc(wl*1000, n1, n2)/2)
filename = 'dc-sweep-%inm-%s-%inm-etch-%i-film.dat' % (wl*1000, 'TE', etch_depth*1000, film_thickness*1000)
np.savetxt(filename, np.c_[gaps, lengths], delimiter=',', header='Coupling lengths (50\%)')
It is recommend to install modesolverpy
either via:
pip3 install modesolverpy # or pip2 install modesolverpy
apt install gnuplot
yaourt -S python-modesolverpy
If installing using the Arch Linux AUR package or pip
, dependencies will be automatically downloaded and installed, if not, one should ensure the following dependencies are installed:
Either Gnuplot or Matplotlib can be used for plotting; I am a Gnuplot user to the code was written with it in mind. If both Gnuplot and Matplotlib are installed, the code will default to Gnuplot.
- setuptools,
- numpy,
- scipy,
- tqdm, and
- opticalmaterialspy.
EITHER:
OR:
This finite difference mode solver is based on a modified version of EMpy.
Thank you to Inna Krasnokutska for testing.